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Abstract

Essays on Domestic and International Airline
Economics with Some Bootstrap Applications

by

Anthony Kenneth Postert

We present several essays on topics in airline economics. The first essay presents
a model of U.S. aircraft demand. This joint model of demand for and supply of
commercial air service allow us to simulate the effects of emerging technologies in
engine design capabilities and in aircraft capacities on airline fleet sizes.

The second essay examines the possibility that relatively high prices in the Euro-
pean airline industry are due to market power. We examine the market conduct of
firms in the European airline industry and find little evidence that competitive pricing
is violated on average.

In the third essay, we present an integrated model of world aircraft demand. We
estimate the demand for both passenger and cargo services and tie this demand to
cost analysis of the carriers. Our cost model is used to generate derived demand
schedules for the factors of production, in particular flying capital.

We take a brief lock at bootstrap techniques in the forth essay. Bootstrapping has
become a powerful technique for estimating sampling distributions of statistics since
its introduction by Efron (1979). We discuss the bootstrapping procedure and present

some small sample evidence of its effectiveness through Monte Carlo experiments.
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The fifth essay applies the bootstrap to a model of U.S. aircraft demand. We
bootstrap confidence intervals for Allen-Uzawa partial elasticities of substitution and
price elasticities. We find prediction intervals for forecasts of airline’s fleet size using
the bootstrap.

The sixth essay suggests an application of leapfrogging measures to ti1e airline
industry. A detailed look at Hultberg and Postert (1998) is presented. Three rank
mobility measures are presented and used to determine the amount of leapfrogging
in the data. A human capital augmented Solow-Swan model is fit to the data and we

use bootstrapping to calibrate the model.
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Chapter 1

Introduction

The domestic industrial policy of the United States has undergone changes that have
spread world wide. A major turning point in policy was the Airline Deregulation Act
of 1978. The Act influenced moves toward deregulation in trucking and rail, as well
as deregulation in non-transport sectors such as banking and telecommunications. It
is doubtful that these latter movements toward deregulation would have proceeded so
quickly had the early experience with airline deregulation been less positive. Domestic
deregulation of the U.S. airlines also has been influential in the policies of other
countries. Since 1978, there has been deregulation of the domestic air transportation
sectors in Canada and Australia.

Until recently, the European airline industry has been sheltered from competition.
Bilateral treaties were used to set fares and flight frequencies and flag carriers were
heavily subsidized. With the ongoing liberalization of the industry, these carriers
have been exposed to competitive pressures of the sorts that U.S. firms felt in the
late 1970s and on.

The traditional superiority of the U.S. has not been limited solely to its airlines.
The U.S. has long been the world’s leader in aviation technology for civil and military
aircraft. During the past several decades, U.S. firms have transformed this position of
technological leadership into a thriving industry with large domestic and international
sales of aircraft and related products. In 1992, sales of civil aircraft peaked at $39.9
billion, with exports of $24.3 billion. This leadership has contributed significantly

towards reducing the current U.S. trade imbalance.
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Dispite its historic record of success, there has been concern about whether the
U.S. aeronautics industry will maintain its worldwide leadership position. Increased
competition, both technological and financial, from European and other non-U.S.
aircraft manufactures has reduced the global market share of U.S. airframe manufac-
turers to only two. Despite gains made in the recent GATT negotiations that limit
subsidies to Airbus, substantial competition is expected to continue. Forthcoming
noise abatement requirements and environmental concerns create additional chal-
lenges faced by U.S. producers and purchasers of aircraft.

The nature of international trade has changed dramatically over the last decade.
Where once the world was a place of nations seeking their own interests individually,
this has been replaced by large trading blocks. The European Community has em-
barked on an ambitious effort to remove economic barriers among the twelve member
states and to establish an integrated market system. 1992 EC integration presages
the momentum of global changes in international trading arrangements that place
special demands on the global economic community. It is hard to argue that these
developments in Europe have not been pivotal factors in the passage of the North
American Free Trade Agreement.

This changing environment means that governments and industries that have en-
joyed success in some international and/or domestic markets will find that terms of
trade are altered. Continuation of current subsidies and business as usual may prove
infeasible. On the other hand, economic entities that may have been unable to suc-
cessfully compete in some markets may find new business opportunities and avenues
for their profitable exploitation. As countries around the world have developed under
this new environment, so has the patterns of air traffic. For example, before the start
of the “Asian Crisis,” the share of international traffic generated over and near the

Pacific Ocean has been increasing at a rate of more than 10% per year, far above the
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6.6% annual growth rate for the rest of the world. Projections indicate that by the
end of the century over one third of all international flights will emanate from the
Pacific.

Often in applied econometrics, one sees point estimates for various elasticities and
other estimates. These are almost never presented with standard errors or confidence
intervals. However, no one would think to report parameter estimates of a regres-
sion without reporting either t-statistics or p-values. A possible reason that many
econometricians do not report standard errors on elasticities is that the distribution
theory for these values is intractible. Bootstraps can be of some help in this regard.
By boostrapping parameter estimates, distributions for elasticities can be built, no
matter how non-linear the elasticity as a function of the parameters.

One of the most important tasks of the applied econometrician is to produce
forecasts of some type. However, forecasts are always steaped in some uncertainty.
The econometrician will never exactly predict the value of interest. This does not
mean that the forecasts are of no use, but the degree of confidence in the forecast
should be expressed. By expressing forecasts as both point estimates and prediction
intervals, the forecast user is given the information that allows for sound judgement.
The values at the edge of the prediction intervals can be used in “what if” analysis.

Typically, there are two sources of error in forecasts. One is the sampling error in
the parameter estimates of the model being used. The other is random error term in
the model. While the parameter estimates may be very precise, forecasting the error
term is, by definition, impossible. Bootstrapping allows us to find prediction intervals
in a straighforeward fashion.

In this dissertation, we explore some applied economic issues as they relate to
the airline industry, both U.S. and international. In Chapter 2, we develope a model

of aircraft demand for the U.S. We explore the competitiveness of European airline
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industry in Chapter 3. In Chapter 4, we outline a procedure for forecasting the
world-wide size of airline fleets. In Chapter 5, bootstrapping and Heterogeneous and
Autocorrelation Consistent (HAC) Covariance Estimators, which are used to calculate
confidence and prediction intervals in the analyses carried cut in Chapters 6 and 7.
We apply the bootstrap to calculate confidence intervals for elasticity estimates and
to produce prediction intervals for forecasts of airline fleet growth in Chapter 6. We
examine the application of recent work in the growth literature to the convergence
in production of carriers in the international airline industry in Chapter 7. We also
utilize bootstrapping procedures to test for rank movements in such measures in

Chapter 7. Chapter 8 concludes.
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Chapter 2

A Model of U.S. Aircraft Demand

2.1 Introduction

The airline industry has grown considerably since 1978 when the industry was dereg-
ulated, and continues to grow (Morrison and Winston, 1995). Consumers have bene-
fited greatly due to airline deregulation. Caves, et al. (1987) state that deregulation
has increased passenger-mile productivity growth between 1.3 and 1.6 percent per
year. Morrison and Winston (1995) show that deregulation has lead to fares that are,
on average, 22 percent lower than if regulation was still in place.

In addition to lower prices, other benefits have occurred. With the increase in
hub-and-spoke systems due to the elimination of restrictions on routing, Morrison and
Winston (1995) find a $10.3 billion a year benefit from the increased flight frequency
offered by the hub-and-spoke system. While it is true that passengers often must
take less direct routes to their destinations, the number of passgers changing planes
has not increased dramatically since deregulation (Morrison and Winston, 1995).
Additionally, the passengers changing planes rarely have to change airlines. This
constitutes an improvement in service as most passengers perfer on-line conections
(Morrison and Winston, 1995).

The benefit of hub-and-spoke systems is reduced due to longer travel time, both
in-flight and waiting for flights. Ground time has increased by five minutes regardless
of distance traveled. However, the cost of the increase in travel time ($2.8 billion

per year) is more than offset by the benefit of hub-and-spoke systems (Morrison and

Winston, 1995).
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While consumers have gained a great deal through deregulation, there are other
possible innovations that will benefit not only consumers, but airlines and airframe
manufactures as well. In this essay, we examine airframe and engine innovations and
the benefits of those innovations that accrue to equipment manufacturers, airlines
and passengers.

The primary role of the National Aeronautics and Space Administration (NASA),
in supporting civil aviation, is to develop technologies that improve the overall perfor-
mance of the integrated air transportation system, making air travel safer and more
efficient, while contributing to the economic welfare of the United States. NASA
conducts much of the basic and early applied research that creates the advanced
technology introduced into the air transportation system. Through its technology re-
search program, NASA aims to maintain and improve the leadership role in aviation
technology and air transportation held by the United States for the past half century.

To meet its objective of assisting the U.S. aviation industry with the technological
challenges of the future, NASA must identify research areas that have the greatest
potential for improving the operation of the air transportation system. By thoroughly
understanding the economic impact of advanced technologies and by evaluating how
those new technologies would be used within the integrated aviation system, NASA
can balance its research program and help speed the introduction of high-leverage
technologies.

The chapter is organized as follows. First, we discuss the model of aircraft demand
in Section 2.2. This includes models of air travel demand and air travel supply. The
specifics of how we use the estimated parameters from our travel demand and travel
supply models to project aircraft demand are explained in Section 2.3. In Section 2.4,

we define a baseline scenario and three alternative scenarios for changes in the supply
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and demand variables. From these changes, we project travel demand changes, air

fleet sizes and operating margins for the period 1995-2005. Section 2.5 concludes.

2.2 The Aircraft Demand Model

In creating this model, we had some specific goals in mind. A primary objective
was to generate high-level estimates from broad industry-wide supply and demand
factors. We envisioned being able to forecast the demand for air travel under a variety
of scenarios. From these air travel demand forecasts, we then could then estimate
the derived demand for the factors of production, most importantly, the number of
aircraft in the fleets of U.S. passenger air carriers.

To create the model, we first identified 85 key U.S. airports from which flights
originate and then developed airport-level demand models for passenger service pro-
vided by major air carriers. Furthermore, we linked the air carrier-specific demand
schedules to an analysis of the carrier’s technologies via their cost functions expressed
in terms of the prices of the major inputs—labor, fuel, materials, and flight equip-
ment. Flight equipment was modeled in an especially detailed way by incorporating
some key operating characteristics of aircraft.

From the cost functions, we generated derived demand schedules for the factors of
production, particularly aircraft fleets. The derived demand schedules are functions
of the price of the factor of production, prices of the other factors, parameters that
describe the both the aircraft and network used by the carrier, and the level of
passenger service supplied.

The aircraft demand model starts with the factors affecting the demand for air
passenger travel at the airline and airport levels. It then examines the determinants
of airline cost functions and the resulting industry supply curves. The objective of

both analyses is to obtain parametric estimates for the air travel demand and airline
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cost functions. These parametric estimates can then be combined with user-specified
values of key supply and demand variables to generate industry-level forecasts of
revenue passenger-miles (RPMs) flown and the number of aircraft in the fleets of U.S.

passenger air carriers.

2.2.1 Air Travel Demand

Our first analytical task was to develop a model of demand for an airline’s passenger
service. From a particular airport at origin ¢, carrier j will generate a certain level
of passenger traffic. The U.S. Department of Transportation’s (DOT’s) Origin and
Destination data records a one in ten sample of all tickets; from these, the RPM service
origination at a particular airport for a particular carrier is constructed. Demand for
a carrier’s service is driven by the carrier’s passenger fare yield (measured by the
average ticket price for flights originating at airport i divided by the average number
of RPMs flown), its competitors’ yields, and the size and economic prosperity of
the market. We modeled the economic characteristics of the Standard metropolitan
Statistical Area (SMSA) surrounding the 85 airports in the study in terms of the
area’s population, per capita income, and unemployment rate. The period under
consideration was from the first calendar quarter of 1979 through the last calendar
quarter of 1992.

The demand function, in equation form, is

qtvi!j = Dtrivj (pt’ivj’ Pt|ivC7 ztvi) b (2'1)

where ¢;;; is the scheduled demand (in RPMs) originating at time ¢ from airport z
for carrier j; p:;; is the average yield for service originating at time ¢ from airport ¢
for carrier j; and p; ;. is the average yield for the other carriers generating traffic at

time t from airport ¢ for carrier j. The z;; are the other demand characteristics at
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time ¢ for airport i. Conventional treatments for firm and airport fixed effects were
used. These effects capture those important characteristics of a particular city that
are not easily measured, such as tourism effects. We use a log—log specification for
(2.1). so that the regression coeflicients may be interpreted as elasticities.

The total demand for an air carrier’s passenger service was then constructed by
summing the airport-specific demand equations. In terms of (2.1), the total demand
for a carrier’s service is given by

ap
Qi =D iy (2.2)
i=1
where ap is the number of airports (85).

Table 2.2.1 shows the demand variables that were incorporated into the model. All

the explanatory variables were found to be statistically significant at the 95 percent

level of confidence.

2.2.2 Air Travel Supply

The second major component of our econometric study explains total carrier costs in
terms of output quantities, factor prices, aircraft attributes, and network traits. The

cost analysis was based mainly on observations from the DOT Form 41 data. The cost

Table 2.1 U.S. RPM Demand Variable Estimates

Parameter
Variable Estimate T-Ratio
Own yield -1.165 -46.00
Competitors’ yield 0.095 1.83
Per capita income 1.334 8.33
Population 1.228 10.64
Unemployment rate -0.121 -4.63
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data follows 13 U.S. passenger air carriers with quarterly observations between the
beginning of 1979 and the end of 1990. These firms are the set of former certificated
carriers that existed throughout the study period and account for well over 95 percent
of the domestic air traffic. From the Form 41 data, we generated a separate set of
demand equations for each of the carrier’s factors of production based on standard
economic assumptions concerning the cost-minimizing behavior of a carrier. In turn,
these demand equations permitted examinations of the impact of factor price and
factor productivity changes, fleet and network configurations, and aircraft operation
characteristics.

Scheduled RPM traffic for carrier j at time £ was constructed as the sum of
origination traffic supplied by the carrier for all airports from which it offered flights.
This was the first of the two outputs considered in the cost function below. The
second was the level of nonscheduled RPM service. The two generic output categories
at time ¢ for carrier j are designated y. ;1 and ¥, ;2 for scheduled and nonscheduled
RPM demand, respectively. The factors of production are labor, energy, materials,
and capital. Factor prices are labeled w. In the model, capital refers to aircraft fleets
only. Capital other than aircraft, such as ground structures and ground equipment,
is included in the materials category. Omitting the time and firm subscripts, the

transcendental logarithmic (translog) costs function is given by

2 2 2 4
logTC = ao+Za;logy;+Zza;jlogy;10gyj+Eﬁ;logw;

= i<i =1 i=1
4 4
+>°) Bijlog w; log w;
i<i =1

4
+ Z piaircraft attributes; log weapital

=1

2
+ E ~:network traits;. (2.3)

=1
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Cost shares for labor, energy and materials are given by

4
M; = B: + ) _ Bijlog w;.

i=1

The cost share for capital is

4 4
Meopitat = Beapital + E Beapital,j log w; + Z p; log aircraft attributes;.

=1 =1

11

(2.4)

(2.5)

The translog cost equation can be viewed roughly as a second-order approximation

of the cost function dual to a generic production function. The translog is the most

widely used of the flexible functional forms (Green, 1993). The translog functional

form was introduced by Christensen, et al., (1973) as a production function that did

not impose homotheticity or separability. However, we did impose homotheticity in

the cost function and imposed symmetry of the cross-price derivatives. Symmetry

and linear homogeneity in input prices are imposed by the restriction:

o = aji, Vi, j; Bij = Bit, Vi, 539 Bi=1;>_Bi; =0; and > p; =0.
3 7 J

(2-6)

Summary statistics based on the translog cost equation and its associated share

equations are provided by the Allen-Uzawa and Morishima partial elasticities of sub-

stitution and by price elasticities. A measure of returns to scale may also be obtained

from the parameter estimates.

The Allen-Uzawa partial elasticities of substitution are given by

6.. Bi; + SiS;
i 5:5;

.. B+ S:(S: — 1)
133 Siz A

Morishima elasticities are given by

oi; = (05 — 0:)Si,t # 3.
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The own- and cross-price elasticities are

ei = 0uS:
& = 0i55i#] (2.9)
€ = 058,1#7.

Our menu of flight capital characteristics was modeled with a set of attributes
of the aircraft fleet. A major component in productivity growth is measured by the
effects of changes in these attributes over time (see Baltagi and Griffin, 1988 for an al-
ternative panel data treatment of technological change). We considered the attributes
of the capital stock with the following rationales. We expect newer aircraft types, all
other things being equal, to be more productive than older types. Newer wing designs,
improved avionics, and more fuel efficient engine technologies make the equipment
more productive. Once a design is certified, a large portion of the technological in-
novation becomes fixed for its productive life. The most significant contribution to
productivity growth in the 1960s was the introduction of jet equipment. While this
innovation was widely adopted, it was not universal for carriers in our sample.

In an engineering sense, transportation industries tend to be characterized by in-
creasing returns to equipment size. Costs for fuel, pilots, terminal facilities and even
landing slots can be spread over more passengers. However, large size is not without
potential diseconomies. As equipment size increases, it becomes more difficult to fine
tune capacity on a particular route. Also, as capacity is concentrated into fewer de-
partures, quality of service declines (the probability that a flight is offered at the time
a passenger demands it decreases). This raises particular difficulties in competitive
markets where capacity must be adjusted in response to the behavior of rival carri-
ers. Deregulation has accentuated this liability by virtually eliminating monopolies

in domestic high-density markets. On the other hand, through more vigorous fare
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competition, deregulation has increased the total volume of traffic, somewhat atten-
uating this liability. In any event, the operating economies of increased equipment
size must be traded off for this limited flexibility.

Fleet diversity also represents tradeoffs. On one hand, having different sizes of
aircraft allows a carrier to obtain a better fit between the demands for capacity on a
particular route and the type of equipment used. On the other hand, there has been
a major trend toward increased standardization of fleets. Having a single aircraft
type minimizes costs associated with crew training, maintenance and the inventory
of spare parts.

In addition to our two outputs—revenue passenger and revenue cargo ton mile—we
include three variable inputs—labor, fuel and materials (an aggregation of supplies
and outside services); one quasi-fixed input—flight and ground equipment; and two
attributes of airline networks-the stage length and the load factor. Stage length
allows us to account for different ratios of costs due to ground-based resources to
costs attributable to the actual flight length. Short flights use a higher proportion of
ground-based systems than longer flights for a RPM of output. Also, shorter flights
tend to be more circuitously routed by air traffic control and spend a lower fraction of
time at an efficient altitude than longer flights. The other output characteristic is load
factor. Although this variable also can be viewed as a control for capacity utilization
and macroeconomic demand shocks, it has been interpreted in many transportation
studies as a proxy for service quality. As load factors increase, the number and length
of flight delays increase as do the number of lost bags and ticketed passengers who
are bumped. Inflight service also declines since the number of flight attendants is not
adjusted upwards as load factor increases.

We estimated (2.3), (2.5) and the labor and energy share equations given in (2.4)

using iterated seemingly unrelated regressions. The estimates of the cost function are
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provided in Table 2.2.2. The estimation produced estimates that are reasonable. The
return to scale estimate at the data mean is 1.073. Seasonal variations were controlled
by the inclusion of three seasonal dummy variables. We control for fixed firm effects
by including firm dummy variables in the equation. These firm effects can be given
the reduced form interpretation of omitted variables that are specific to the firm and
display little variability over the sample period, or can be given a more structural
interpretation as time-invariant technical inefficiencies from a stochastic frontier cost
function (Schmidt and Sickles, 1984; Cornwell, et al.; 1990).

The summary statistics for the various elasticities are shown in Tables 2.2.2, 2.2.2

and 2.2.2.

2.3 Forecasting Aircraft Demand

The joint model of supply and demand for commercial passenger air service specified
in this paper and the inferences about the demand for airplanes that are embedded
in our econometric results allows us to simulate the effects of emerging airframe and
engine technologies by modifying characteristics of the planes in service. We can
also simulate the growth in total system demand for passenger service and for factor
inputs such as the number of aircraft in the fleet.

We follow several general steps when evaluating scenarios:

1. We predict the change in RPMs based upon economic forecasts and demand

equation estimates.

2. We estimate airline revenues based upon forecast RPM growth and hypothesized

changes in ticket prices.

3. We estimate airline operating costs on the basis of forecasted RPM growth,

changes in input prices, and changes in aircraft and network characteristics.
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Table 2.2 U.S. Cost Function Variable Estimates

Parameter

Variable Estimate T-Ratio
Labor price 0.584 n/a
Labor price squared -0.020 -2.53
Labor x energy -0.017 -4.32
Labor x materials 0.032 5.25
Labor x capital 0.005 1.87
Energy price 0.173 n/a
Energy price squared 0.104 40.10
Energy X materials -0.074 -24.09
Energy x capital -0.013 -9.20
Materials price 0.164 n/a
Materials price squared 0.089 12.01
Materials x capital -0.047 -14.80
Capital price 0.079 n/a
Capital price squared 0.055 25.40
Scheduled demand 0.642 25.13
Scheduled demand squared 0.091 1.71
Nonscheduled demand 0.228 10.55
Nonscheduled demand squared -0.006 -0.11
Scheduled x nonscheduled demand -0.023 -0.50
Stage length -0.220 -4.81
Load factor -0.511 -7.68
Average seats 0.014 4.61
Average age -0.011 -3.69
Percentage jets 0.003 3.91
Percentage wide-bodied aircraft -0.060 -6.45

Table 2.3 Allen-Uzawa Partial Elasticities of Substitution at Data Mean
Labor Energy Materials Capital

Labor -0.771 X X X
Energy 0.832 -1.301 X X
Materials | 1.33¢ -1.601 -1.789 X
Capital 1.108 -1.268 -2.628  -2.846
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Table 2.4 Morishima Partial Elasticities of Substitution at Data Mean
- Labor Energy Materials Capital

Labor X 0.936 0.172 1.098
Energy 0.370 X -0.052 0.006
Materials | 0.512 0.030 x  -0.138
Capital 0.312 0.125 0.017 X

Table 2.5 Price Elasticities at the Data Mean
Labor Energy Materials Capital

Labor -0.450 0.144 0.219 0.088
Energy 0.486 -0.226 -0.264  -0.100
Materials | 0.779  -0.278 -0.293  -0.208
Capital 0.647 -0.219 -0.431 -0.225

4. We predict the aircraft inventory from airline operating costs, the capital share

equation, and hypothesized changes in aircraft price and aircraft size.

2.3.1 Forecasting Changes in Travel Demand

To predict changes in travel demand, the model starts with actual airline output for
the last two quarters of 1993 and the first two quarters of 1994 and changes it over
time based on the estimated demand function coefficients and predicted changes in
the explanatory variables. The equation for predicting annual changes in demand is
5
%ARPM = B:%AX;, (2.10)
i=1
where the §; are the coefficients estimated from the econometric model and the X; are
the explanatory variables. Due to the logarithmic structure of the statistical model,

the coefficients are interpreted as elasticities. For example, the coefficient of 1.334 on
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per capita income means that a one percent increase in per capita income raises the
demand for air travel by 1.334 percent.

The econometric estimates of the demand function are based on quarterly traffic
volume for each airline and airport in the sample. While it is possible to build the
demand forecasts up from this highly detailed level, it would be time-consuming
and probably add more inaccuracy to the final estimate. Instead, we use the actual
scheduled and nonscheduled RPM data for the domestic and international routes of
U.S. passenger airlines as the starting point and grow demand at the rate indicated
by (2.10). This imposes the constraint that output grows at the same rate for each
airline. While this is clearly inaccurate, this is not a significant bias in the model
since our goal is to forecast industry-wide demand, costs, and aircraft fleets. For
long-run forecasts such as those generated by the model, it is immaterial whether
the aggregate demand for air travel is satisfied by a particular carrier such as United
Airline or Continental Airlines.

For the purpose of forecasting fares and for calculating industry travel demand, the
own-fare and other-fare changes are assumed to be identical. Therefore, the overall
price effect is the sum of the two coefficients. The net effect shows that air passenger
travel is sensitive to price changes, but not unusually so. The model predicts that
a ten percent fare reduction will increase RPMs by 10.7 percent. This implies that
after holding other factors constant—such as population and income—changes in air

fares will have virtually no effect on total revenues collected by the industry.

2.3.2 Forecasting Changes in Airline Costs

The airline cost equation estimated for the model is shown in (2.3). As shown, total
costs are a function of airline outputs, input prices, and aircraft and airline network

attributes. Using the supply parameter estimates shown in Table 2.2.1, (2.3) can
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easily be used to produce a time series of predicted changes in airline costs. Using
the log-log structure of our translog specification to our advantage, the following

forecast equation is derived:

2 2 2 4
%RATC = Z a;%Ay; + E Z a,—,-%Ay,-%AyJ— + Z ﬂ;%Aw;

=1 i< 5=t =
4 4
+> 3" B Aw; T Aw;
i<y j=1

4
+ Z pi%Aaircraft attributes;%Awegpitar

=1

2
+ Y v:%Anetwork traits;, (2.11)

i=1
where %A means annual percentage change in the variable.

As with the demand forecasts, total costs are projected forward from the baseline
defined by the reported data. The model increases the costs at the rates predicted
by the model, given output forecasts, input price changes, and aircraft and network

characteristics.

2.3.83 Forecasting Changes in Aircraft Fleets

Estimating the aircraft fleet required to meet the forecasted travel demand is a some-

what more involved process. Four factors enter into the forecast of aircraft fleets:

1. The changes in total airline costs;
2. The estimated share of aircraft costs in total costs;
3. The forecasted change in aircraft capital costs; and

4. The growth in average aircraft size.

Changes in total airline costs were discussed in the previous section. Referring

to (2.5), the aircraft share of total costs is a function of input prices and aircraft
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attributes. As with the costs and demand forecasts, we update the capital share
equation through the forecast period as a function of the rates of change in the factor
price and aircraft attribute parameters. The equation for changes in the capital cost
share is
4 4
AMepitat = Y Beapitat j%Aw; + Y, p;%Aaircraft attributes;. (2.12)
i=1 i=1

The resulting capital share time series predicts the fraction of total costs that will
be spent on aircraft investments. From (2.12), the capital share varies with changes
in the price of aircraft and with changes in aircraft characteristics. By multiplying
this share estimate by total costs, we obtain a time series of capital investment in
aircraft.

The final pieces of information needed to calculate the number of planes in the
aircraft fleet are the predicted level of aircraft prices and the average aircraft size.
The aircraft price variable can include more than simply the implicit rental price
and since it reflects a more comprehensive measure of aircraft ownership costs, it can
also be used to reflect the changes in the productivity of aircraft. Aircraft size, as
mentioned earlier, is measured by the average number of seats. When the aircraft
investment is divided by the product of the aircraft price index and the average size,
we obtain the estimated number of planes in each airline’s fleet. In equation form,

the formula is
TC- Mcapital

Peapital - Average Size’

Number of Planes = (2.13)

2.4 Scenarios and Forecasts

We define a baseline scenario for the supply and demand variables in Table 2.4. Using
these values, the aircraft demand model projects annual growth in travel demand of

4.55 percent for the period 1994 through 2005. This prediction compares favor-
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ably with annual growth forecasts of 4.74 percent and 4.69 percent from the Boeing
Company (Boeing) and the Federal Aviation Administration (FAA), respectively. In
terms of the number of planes required to satisfy this growth in travel demand, the
model projects annual growth in the U.S. commercial airiine fleet of 2.36 percent for
the period 1994 through 2005. This prediction is between Boeing’s forecast of 2.13
percent annual growth and the FAA'’s forecast of 3.28 percent annual growth.

To demonstrate the reasonableness and utility of this model, we evaluate a set of
alternative scenarios. These are summarized in Table 2.4 and 2.4.

In a robust economy scenario, economic growth accelerates to three percent per
year, as compared to a 2.5 percent growth rate in the baseline scenario. Consequently,
the unemployment rate falls from six percent in 1994 to 4.9 percent in 2015. Because
of this robust macroeconomic environment, growth in the consumer demand for pas-
senger air travel increases to 5.43 percent. As a result, the derived demand for aircraft
improves.

In an oil price shock scenario, the price of oil is assumed to be approximately twice
as high by the year 2015 as it would have been in the baseline scenario. As a result, not
only do energy prices increase at a faster pace, but real economic growth declines from
2.5 percent per year to zero percent per year. This poor macroeconomic environment
causes the demand for passenger air travel to decline dramatically relative to the
baseline scenario.

The airlines are assumed to cut fares more rapidly in the fare war scenario than in
the baseline scenario. While this stimulates the demand for passenger air travel and
the derived demand for aircraft, the scenario is probably self-limiting because negative
operating margins would cause many firms to exit the industry and certainly would

constrain the availability of credit with which to finance the needed increase in fleets

and networks.
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Table 2.6 Baseline Exogenous Variabie Growth Rates

Annual
Growth
Variable Rate
Fare yield -1.23%
Income growth 2.50%

Population growth 0.94%
Unemployment rate  0.00%

Labor Price -1.60%
Energy Price -1.60%
Materials Price 0.00%
Capital Price -0.50%
Stage Length 0.35%
Load Factor 0.15%
Average Age 0.00%
Average Size 0.75%
Percentage of

jet aircraft 0.00%

Percentage of
wide-bodied aircraft 0.04909
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Table 2.7 Baseline and Alternative Scenario
Exogenous Variable Growth Rates

Annual Growth Rate
Robust Oil Fare
Variable Baseline Economy Shock War
Fare Yield -1.23% -1.23% -1.23% -2.00%
Income Growth 2.50% 3.00% 0.00% 2.50%
Population Growth 0.94% 094% 0.94% 0.94%
Unemployment Rate 0.00% -1.00% 0.00% 0.00%
Labor Price -1.60% -1.60% -1.60% -1.60%
Energy Price -1.60% -1.60% 2.00% -1.60%
Materials Price 0.00% 0.00% 0.00% 0.00%
Capital Price -0.50% -0.50% -0.50% -0.50%
Stage Length 0.35% 0.35% 0.35% 0.35%
Load Factor 0.15% 0.15% 0.15% 0.15%
Average Age 0.00% 0.00% 0.00% 0.00%
Average Size 0.75% 0.75% 0.75% 0.75%
Percentage of
Jet Aircraft 0.00% 0.00% 0.00% 0.00%
Percentage of
Wide-Bodied Aircraft | 0.04909 0.04909 0.04909 0.04909

Table 2.8 Growth in Travel Demand and Aircraft Fleets and
Operating Margin Under Various Scenarios for Years 1995-2005.

Annual Growth Rate
Travel Aircraft | Operating

Scenario Demand Fleets Margin
Baseline 4.55% 2.36% 8.0%
Robust Economy  5.34% 3.07% 8.6%
Oil Shock 1.22% -0.61% -1.9%
Fare War 5.38% 3.10% 0.4%
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2.5 Conclusions

Our joint model of demand and supply for commercial air service, and the inferences
about the demand for airplanes that are embedded in that model, allows us to simulate
the effects of emerging technologies in engine design capabilities and in airframe
capacities in terms of modifications in the characteristics of the planes in service.
We are able to simulate the growth in total system demand for service and thus,
for factor inputs such as planes. We are able to examine the impact that emerging
technologies that focus on engine fuel efficiencies and noise abatement characteristics
have on the demand for aircraft. The former will reduce fuel requirements (fuel is one
of the factors of production) and the latter will expand the possibilities for increased
flight frequency and would lessen the likelihood of flight curtailment in specific urban
corridors which would in turn constrain total number of arrivals/departures in selected
airports.

Policy considerations are clearly an important component of an aircraft demand
model. In the near term, mandating stage three aircraft will lead to the retiring of
several older planes, or at the minimum, require retrofitting their engines with hush
kits. Though it appears unlikely that such proposals would pass Congress, the recent
National Airline Commission has recommended repealing the aircraft excise taxes,
modifying the ticket tax, and exempting airlines from the BTU tax. Our model is
capable of reflecting the impact of these proposals through their impact on input and

output prices in the aircraft investment equation.
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Chapter 3

Competition in the European Airline Industry

3.1 Introduction

It is widely agreed that fares charged on most routes in Europe have been significantly
higher than those charged in the U.S. for routes of similar distance. This point was
exemplified by the 1984 conference of the Federation of European Consumers where
it was decided that it would be cheaper to fly all their delegates to Washington, D.C.
than to meet anywhere in Europe (Sampson, 1988).

One possible explanation of the high prices is that European airlines are inefficient
relative to U.S. airlines. When compared to the U.S. airline industry, Good, et al.
(1993a,b, 1995) found that the European airline industry is highly inefficient. All
the European airlines were technically less efficient than all the U.S. airlines for the
period 1976-86. Pan Am and Eastern (both of whom have left the industry) had
technical efficiency scores higher than those of the European carriers. A high cost
structure for the European airline industry has also been noted by McGowan and
Seabright (1989) who suggest that high costs in the European airline industry are
due to poor utilization of labor and high indirect and overhead costs. They point
out that all the non-U.K. airlines have very high labor costs when compared to U.S.
airlines. Captain and Sickles (1997), using data largely based on the period 1976
through the mid-1980s, provide support for this in that labor is paid a wage above
its marginal revenue product and suggest strong labor unions as a reason.

In this chapter, we also examine another possible reason for relatively high prices

in the European airline industry: market power. With schedules set by treaty, the
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airlines in a market would constitute an oligopoly. We examine the European carriers
in an oligopoly structure with product differentiation, using a newly developed panel
of international carriers (Wingrove, et al., 1996, Kaplan, et al., 1997, and Johnson, et
al., 1997) from which we extract data on eight air carriers from Europe with annual
observations from 1976 through 1994.

The chapter is organized as follows. In Section 3.2, we discuss the institutional
environment in the European industry as it has evolved through the mid-1990s. We
next discuss the airline data we use and what it tells us about differences between
carriers in Europe, which have operated in a highly regulated, albeit increasingly
competitive economic environment, and carriers in the U.S. , which have operated in
a deregulated environment over the entire period in Section 3.4. These comparisons
point out the substantial differences in total productivity enjoyed by U.S. carriers vis-
a-vis their European counterparts, and underscore the need to better understand the
sources of these efficiency differentials. We pursue one possible source of productivity
difference by considering the implications of a non-competitive model of cartel behav-
ior to characterize the European carriers in Section 3.5. In Section 3.6, we implement
this model empirically and test the extent to which European carriers’ pricing de-
cisions are at variance with marginal cost pricing. We conclude, in Section 3.7, by
suggesting that one way out of the European’s conundrum of apparently competitive
pricing at the margin and moderate technical inefficiency may be to exploit the low

cost structures of U.S. carriers via strategic alliances and code sharing arrangements.

3.2 A Recent History of the European Airline Industry

Since their inception, European “flag carriers,” subsidized and even owned by govern-
ments, have acted as duopolies: two carriers from two countries would carve up the

market on every route and through bilateral agreements determine how many people
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each would carry and charge. Even as late as 1993, European international routes
were oligopolistic. The airlines also engaged in “pooling” agreements whereby they
would divide revenue, a practice that persisted until the late 1980s on three-fourths of
European routes (The Economist, 1993). Before deregulation, the airlines had to get
permission from national licensing offices and show financial strength to start oper-
ating. Established airlines even needed permission to start new routes. Competition
was very limited and as a result of strong state protection and aid for five decades,
these carriers were inefficient (Lowden, 1996).

This began changing in 1987. Following the lead of Britain, the Aviation Direc-
torate of the European Commission started a staggered set of deregulatory measures
that lifted entry to barriers to new airlines and laid the foundations for a competitive
environment in the industry (Lowden, 1996). Most significant of the three has been
the “Third Package,” which the Commission initiated in 1993 (Hotten, 1995) and
whose entire provision came into full effect on April 1, 1997 (Lowden, 1996). The
third EC liberalization package for air travel, also called the “Open Skies” program,
allowed airlines to set fares starting in 1993 (Europe 2000, 1992) and to operate a
route between any two EC countries. The open skies program also abolished pooling
(The Economist, 1993) and allowed an airline to offer “cabotage” services (the right to
offer flights within another country for services starting in its own country) (Europe
2000, 1992). As of April 1, 1997 airlines were able to provide full cabotage services
regardless of a flight’s origin (Lowden, 1996).

In keeping with the liberalization started with the Third Package, the European
Commission has also prepared guidelines for state aid to airlines. Although the
Commission can not make a unilateral decision that it is the last time it approves
aid to an airline, it is to consider further aid to an airline only if “external circum-

stances” require it (Feldman, 1997). These guidelines, based on the “one time, last
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time” principle, allow for a one time aid, except in unpredictable circumstances, so
that airlines can adjust to new liberal market conditions (Lowden, 1996). In addi-
tion, the Commission created a subsidy test called the “Market Economy Investor
Principle” (MEIP) whereby funds from public authorities willi not be considered aid
if such funds would have been invested by the private sector (Feldman, 1997).

The above provisions are in the spirit of the counsel of “The Committee of
Wisemen” created by the Commission in 1993. The Committee advocated the contin-
uation of deregulation to establish a Single Aviation Market to meet global challenges.
Towards this end, it recommended harmonizing national regulations for effective cost
cutting, eliminating infrastructural bottlenecks by creating an efficient Single Traffic
Management System, enforcing internal market rules to address problems of slots
and state aid, and curbing government intervention in the operation of air carriers
(Agence Europe, 1994).

The consequences of the deregulatory undertaking have been manifold. The effort
has created many challenges for the European established carriers, or “majors.” Even
without these threats, Europe’s majors face a lot of problems including hub conges-
tion, global competition from strong U.S. majors, lack of unlimited state aid and
aircraft replacements. Yet, the most threatening issue has been upstarts that have
sprung up following deregulation. These market opening efforts encouraged startups
such as Gatwick’s Air Europe, which failed in 1991, Ryanair of Ireland and easyJet of
Greece. For instance, Ryanair’s cheap aircraft, low overhead at its Dublin base and
use of lower cost airports, such as Luton, allowed it to charge such low prices that
British Airways (BA) was forced to pull its service in Dublin in 1991 (Lowden, 1996).

In fact, one may say that the most visible impact of deregulation has been new
entrants and lower fares. Like Ryanair, Greek owned easyJet has offered fares that

not only undercut BA’s prices on British domestic routes, but also those of train
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operators. These upstarts have largely been able to offer cheap fares by keeping sales
and distribution costs low through the use of their own telephone reservations and
ticket-less travel: these usually account for 15% to 20% of total operating expenses
(Lowden, 1996).

Competition in the recent past has also come from low cost air travel made avail-
able by charter airlines. These “carriers,” which initially catered to the leisure market
by selling packed tours, have begun selling tickets only for flights due to the relax-
ation of the rules. Estimates indicate that such “charter” flights account for about
half cross border European travel. Like the recent startups, these carriers also have
costs well below those of the scheduled airlines since they employ only 8% of the
airline workforce ( The Economist, 1993).

To compete in the leisure market, which has become increasingly necessary due
to the effects of deregulation, the majors realize the need to cut costs drastically:
these costs have been high due to expensive service charges, such as those for airport
handling and air traffic control fees, and low labor productivity (The Economist,
1993). One obvious target of cost cutting effort has been employment. Despite
traffic growth and continued financial recovery, including a profit of $1.8 billion for
IATA member European carriers in 1994 (Sparaco, 1995) and a record of 74.8% load
factor on long haul routes in 1996 (Fiorino, 1997), job growth has been slow or falling.
Prompted by growing competition from deregulation, scheduled airlines had cut about
40,000 jobs between 1990 and 1994, even in the face of social disputes and walkouts.
Examples abound. Air France has frozen wages and cut 5,000 jobs to reduce cost by
30%. Alitalia and Iberia have made similar moves by cutting 2,000 and 3,500 jobs,
respectively. By acquiring 49% stake in Sabena, Swissair also reduced ground staff
to take advantage of synergy above the 1,600 jobs that it had already eliminated in
1994 (Sparaco, 1995).
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The efforts toward greater market reliance have resulted in improvements. With
deregulation and commercialization, mostly in northern Europe, airlines there have
exhibited productivity and efficiency gains, especially BA, Lufthansa and KLM
(Lowden, 1996). In addition, liberalization of aviation services, most advanced in the
UK, has allowed BA to establish domestic services in both Germany and France, and
British Midland to become a third carrier by breaking traditional duopolies on many
routes (Hotten, 1995).

Of course, competition from startups and pressures from liberalization might
prompt the majors to retaliate by other than competition enhancing means. They
may try to use political power to deter competition, for instance by monopolizing
slots at congested airports. They may also launch advertising campaigns at the time
of entry of a new startup who will not be able to match these efforts. In reality,
the majors have responded by undertaking “cloning strategies” whereby they have
formed companies that match competitors’ costs and operations; two cases in point
of such strategic subsidiaries include Lufthansa’s Cityline and BA’s Deutsche BA and
TAT France. The majors have also tried to increase market share by combining their
network power. This concept has been the reason for many of the alliances of the ma-
jors in Europe and the U.S. Examples include alliances between KLM and Northwest,
Lufthansa and United, Lufthansa and SAS, Delta and Sabena, and BA and American
(Lowden, 1996). The benefits of deregulation may also be limited by infrastructural
constraints which will aggravate an already congested and intrinsically confusing air
traffic control system (Vincent and Stasinopoulus, 1990). As has been documented
in a report by the Association of European Airlines, there is no unified air traffic
control system for Europe. The situation that existed in the late 1980s and early

1990s of 22 different systems and 44 operating centers based on political boundaries

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

and not operational considerations which could seriously disrupt air travel and create
intolerable delays.

The outcome of the liberalization effort has not been all as planned. It has im-
proved competition on some domestic routes but not across Europe. Price com-
petition of international routes are limited and only 7% of international routes are
operated by more than two carriers. This lack of competitors is reinforced by prob-
lems of airport capacity where inadequate landing and take off slots create barriers
to entry by new competitors (Hotten, 1995). Proposals for changing slot allocations
are often watered down, providing no reprieve from the problem. Other competition
hindering forces have been state aid and air traffic control problems; there are too
many of the latter, often one for each sovereign state’s air space, leading to delays
and hence increases in annual cost of flights. Financial pressures from the high cost
of operation, including high navigational, airport take off and landing fees and 3%
carbon tax, also stifle competition (The Economist, 1993).

That the “Open Skies” initiative has not produced more reform has also been
due to lack of compliance with the EU Commission’s rules. For instance, the EU’s
effort to provide for competition in airport ground handling (believed to be 30%
too high at many airports) by ordering airlines to handle their own effects in large
airports has met with resistance. Lufthansa finds the directive unappealing because
costs for handling at Frankfurt are twice those of other airports, and more than
three times those at London Gatwick and Manchester. German airports also find
this rule objectionable because ground handling generates around 40% of revenues.
In addition, the Commission’s attempts to reduce state aid to airlines has been met
with similar difficulties. Airlines have disregarded these rules and some, such as Iberia,

have requested repeated help by claiming a presence of “durable adverse conditions”

(The Economist, 1993).
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3.3 Data

Before we turn attention to our structural model of cartel behavior we will discuss
the data on which the structural model’s empirical implementation is based. We
also discuss some characteristics of the European carriers in terms of partial factor
productivities and how these differ from those of carriers in the U.S. where dereg-
ulation has a proven track record of some twenty years. We also examine patterns
of radial measures of technical inefliciency that have existed over the period based
on a simple Cobb-Douglas form for the production function using the Cornwell et al.
(1990) time-varying inefficiency model. Differences in partial factor productivities are
significant for some inputs while the technical inefficiency gap appears to have closed
considerably in the late 1980s and early 1990s.

Our supply data set consists of a panel of the eight air carriers from Europe
that were used in Captain and Sickles (1997). A number of data series used therein
were extrapolated between 1985-1990. Results presented here are based on a newly
constructed and complete data set of 37 international airlines from 1976 to 1994 that
are used in Chapter 4. A list of these carriers are presented in Table 3.1. These
carriers and countries are followed with annual observations from 1976 through 1994.

A complete discussion of the data can be found in Appendix B.

Table 3.1 List of Carriers and Countries

Sabena (Belgium) Air France (France)
Lufthansa (Germany) Alitalia (Italy)
KLM (Netherlands) SAS (Sweden, Norway, Denmark)
Iberia (Spain) British Air (United Kingdom)
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3.4 Comparison of U.S. and European Carriers

As was pointed out earlier, European airlines’ inefficiencies relative to U.S. airlines
is one possible explanation of high prices of air travel in Europe since excess costs
need to be recouped as direct subsidies are under increased scrutiny. A possibile
explanation for the difference in efficiency scores is that European airline industry
makes poor use of labor (McGowan and Seabright, (1989)). It is also possible that
labor is being paid a wage that is too high (Captain and Sickles (1997)).

In earlier work utilizing data predominately based on the late 1970s and early
1980s, Good et al. (1993a,b, 1994, 1995) noted differences in technical efficiency be-
tween Europe and post-regulatory U.S. of between 10 and 15 percent. We can use our
newly extended data set to examine whether or not the general trends which mani-
fested themselves as we found them to in the decade following the U.S. experiment
with deregulation while Europe was still strongly entrenched in its rich regulatory
traditions have continued into the second half of the 1980s and into the 1990s. To
that end, we constructed several series of partial productivity indexes and examined
their temporal pattern during the 1970s through the 1990s. The U. S. firms used in
this comparison were drawn from the same newly created international carrier data
set (Good, et al., 1997) and comprise the vast majority of the total U.S. industry. The
firms are American, Contenental, Delta, Eastern, Northwest, Pan Am, Trans World,
United, USAir, and Western. Figure 3.1 displays the partial productivity index for la-
bor. We found a substantial disparity when our sample period begins in 1976 and this
disparity has narrowed substantially by 1994. Although a similar convergence does
not appear in the simple partial productivity measure for the residual materials input
(Figure 3.2), the capital input series for Europe and the U.S. are indistinguishable by
1994 (Figure 3.3).
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Figure 3.1 Ratio of Labor Quantity to Scheduled
Output for Both U.S. and European Airlines
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Figure 3.3 Ratio of Capital Quantity to Scheduled
Output for Both U.S. and European Airlines
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Since it would appear that substantial convergence occurred in the partial pro-
ductivities of the factor inputs we then ask if a similar convergence has occurred
with regard to radial technical efficiency measures. We have estimated a simple
Cobb-Douglas model and have constructed time-varying relative technical efficiency
measures using the Cornwell, et al. (1990) within estimator and a pooled regression
of European and U.S. firms. We then weighted the relative efficiencies by the output
share of the particular carrier in the European or U. S. industry to construct the
differential between Europe and U.S. over the 1976-1994 period. These are displayed
in Figure 3.4.

It is clear that with the addition of data from the mid-1980 through 1994 the
story about inefficiency patterns between Europe and the U.S. that is presented in
Good, et al. (1993a,b, 1995) and based on the decade earlier appears to have changed.
Although there still exists an efficiency difference of about 5% in favor of the U.S.,
this difference is substantially lower than the average of 10%-15% that appeared to
exist in the decade following U.S. deregulation. The remarkable progress of British Air
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Figure 3.4 Differences in Average Efficiency
Scores Between U.S. and European Airlines
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after privatization (and its large share of European total revenue passenger miles) and
the steady progress of Lufthansa, KLM and Air France from the mid-1980s through
the present also has appeared to have flattened the temporal pattern over the entire
period 1976-1994.

In the next section we consider a more structured argument based on a model of
cartel behavior which was applied to the European industry using data predominantly
based on the period 1976-1985 (Capta;in and Sickles, 1997). A number of data series
in that study were not available for later periods through the end of the study period
(1990) and were interpolated and/or forecasted using time-series methods. The model
will explore whether or not there is evidence of noncompetitive pricing or whether
competitive pressures in Europe have also had their way in reducing price/marginal

cost markups.
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3.5 Econometric Model of Cartel Behavior

We will study the European carriers in an oligopoly structure with product differen-
tiation.! Consider an industry with NV firms that produce a differentiated output q.
The output is produced using n inputs ¢ = (z1,Z2,...,zs). Market demand for firm
k at time £ is given by

ke = qk(Pts Pmt, Ye, ¥, €a), (3.1)
where p; is the average price charged by firm k&, pm: is an index of all other firms’
prices, Y; are other variables that shift demand, % are unknown parameters of the
demand function, and €4 are the random errors. The “perceived” marginal revenue

function is

PMR = p; + Diqus, (3:2)

where Dy = Opk:/O0qke-
The cost function for firm & is

th = Ck(th; th Zta w, ect)a (3'3)

where Wy, is a vector of input prices that firm k& pays at time ¢, Z, are industry
variables that shift cost, w are the unknown parameters in the cost function, and e

are the random errors. Marginal cost is
MC = Cl(th, Wi, Zi, 7)' (34)

In an oligopolistic industry, a firm chooses output where marginal cost is equal
to “perceived” marginal revenue (in a perfectly competitive industry, MC = p). We
equate marginal cost and “perceived” marginal revenue to get the quantity setting

condition

Ci(gqres Wi, Z4yv) = pe + D1gid, (3.5)

1This section is based on Captain and Sickles (1997)
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where # is an index of the competitive nature of the firm. That is, when 8 = 0,
the industry is perfectly competitive since marginal cost equals price. A 6 value of
unity is consistent with Nash behavior. Thus, (3.5) is referred to as the behavioral
equation.

The profit function for airline & at time ¢ is

e = qre(Pres Pres - - 3 Pr—1,ts Pr1,85 - - - 1 PNE) * Pt — Cre(qre(-))- (3.6)

Taking the derivative of this function with respect to px: and holding all other prices

constant, we have the first order conditions for profit maximization in a price setting

game:
Okt OCk: Ogxe
—Dkt + — =0. 3.7
a pkt kt aqkt apkt ( )
By summing over the N firms, we have
aQ: OC ks Oqre
h2] N it =0, 3.8

where Q: = 3"; gkt Assuming symmetry in cost, (3.5) reduces to

0Cr  Q:

With this, we can estimate § by specifying a demand and a cost equation.

For the market demand equation, we specify a semi-logarithmic function:

logqie = 6+ 6pPu+ 6p. Pire + 66pPGD Pyt
+864spGAS Pt + bcconsGCON Si:
+6rarPRAIL Py + €4, (3.10)
where gi: is the output of firm % at time ¢, Py, is the price charged by firm &, P is
an index of the price charged by the other N — 1 firms, GDP is the gross domestic

product, GASP is the retail price of gas including taxes, GCONS is the growth in

consumer expenditures and RAILP is the price of rail travel.
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For the cost function, we use a trans-logarithmic specification. After we impose
symmetry, the cost function is given by
3 3 2 13
logC = a+ Zﬂ;logp; + ZZﬂ;jIngi log p; + §Zﬁ{;log2 Di
i=1 7>ii=1 i=1
1 3
+7elog g + 572 10g" ¢ + 3 Yei log g log i

=1

+BrpT P + BwpW P + Bsplog SL + Brrlog LF

7
+BNetoize log Netsize + ) i AIR; +¢. (3.11)

i=1

where p; is the :** input price, ¢ is output, PT is the percentage of the fleet which are
turbo-prop aircraft, W B is the percentage of the fleet which are wide-body aircraft,
SL is the stage length, LF' is the load factor, and Netsize is the size of the network.

The a;AIR; represent fixed firm effects in the cost equation. These firm effects
can be given the reduced form interpretation of omitted variables which are specific to
the firm and display little variability over the sample period, or can be given a more
structural interpretation as time-invariant technical inefficiencies from a stochastic
frontier cost function (Schmidt and Sickles, 1984; Cornwell, et al., 1990).

The cost shares must add to unity and we must have linear homogeneity in input

prices. The following restrictions are thus applied on the cost function:

Be+BL+Bm = 1
Bxi+ Bri+ Pumi = 0,  foralli e {K,L, M}
Yok +YeL +Tam = 0.
Summary statistics based on the translog and its associated share equations are

provided by the Allen-Uzawa, Morishima and own- and cross-price substitution elas-

ticities, and a measure of returns to scale. The Allen-Uzawa elasticities of substitution
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and own-price elasticities are given by

G = Bij + 5:5;
7 S:S;
Bii + Si(S: — 1
i = 5(.2 ) (3.12)
where S; is the fitted share for input :. Morishima elasticities are given by
oij = (Gi — Gii)Se, i # 5- (3.13)
The own- and cross-price elasticities are
vii = (uS;
vij = (iiSit#J
vii = GjSui# 7. (3.14)

Returns to scale are computed as the inverse of the cost elasticity of output. This is

give by
p = By + Bqqlog q + BgLlog pr + BgM log pr + BgK log px] ™" (3.15)

The behavioral equation we estimate is

P=MC- g—:-{- €p- (3.16)

We then estimate a system of five equations using iterated non-linear three-stage least
squares (ITNL3SLS). The five equations are the demand, cost, labor share, capital
share and the behavioral equation. We treat the price of air travel, quantity, total
cost, labor share, capital share, and labor price as endogenous variables. All other

variables are treated as exogenous.
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3.6 Empirical Results

The parameter estimates for the system of equations given in Section 3.5 can be found
in Table 3.2. Fitted share values, returns to scale, and various elasticities calculated
from these estimates are in Tables 3.3 through 3.7.

We identify the market structure by testing the null hypothesis that § = 1 versus
the alternative that 6§ < 1. The null hypothesis is rejected at the 95% level of
significance. The European airlines industry does not behave consistently with Nash
behavior.

In the demand equation, all the parameters (with the possible exception of gas
price) have the expected sign and are significant. The output price elasticity of -
0.55 means that demand for air travel is inelastic and consumers will decrease air
travel demand proportionally less with price increases. However, the elasticity of the
price index is positive and quite large (1.98), so airlines in Europe are thought of as
substitutes and any product differentiation is quite small. The rail price cross-price
elasticity is positive so rail travel is also a substitute for air travel. The output GDP
elasticity is also positive, so countries with higher GDPs have a larger demand for air
travel, which is expected. The gas price output elasticity is negative which may be
due to a link between gas price and aircraft fuel price.

The cost function estimates produce fitted share values that are positive at all
the observations. The estimated cost function is concave in input prices at the data
mean and at 60% of the data points. The estimated returns to scale at the data
mean is 1.29. Of the five airline specific variables included in the cost function, only
stage length and percentage of wide bodied aircraft are significant. The parameter
estimates for both stage length and load factor do not have their expected signs.

Labor, capital and materials are all substitutable inputs as measured with the

Allen-Uzawa elasticities of substitution (see Table 3.5). Likewise, the Morishima
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Table 3.2 Nonlinear IT3SLS Parameter Estimates
Cost Equation

Parameter [ Parameter
Variable Estimate T-Ratio Variable Estimate T-Ratio
log px 0.044 2.30 || logpr 1.163 14.35
log par -0.207 -2.38 | log @ -2.174 -27.31
log? @ 0.198  27.62 || log Qlog px -0.007 -5.36
log @ log pL. -0.043 -7.70 || log @ log par 0.050 8.42
log? pr, 0.117 1747 || log’px 0.041 21.49
log® par 0.158 60.41 || logpx log pr -0.016 -8.28
log px log par -0.025  -13.52 || logpr log par -0.133  -21.17
log SL 0.309 6.19 || LF 0.514 1.82
log Netsize 0.036 0.72 | PWB -1.247 -6.16
PT 0.004 0.66 || Iberia 20.628 23.63
Air France 20.590 22.98 || Lufthansa 20.689 23.53
Alitalia 20.438 23.52 || KLM 20.420 23.63
British Airways 20.499 23.32 || SAS 20.620 23.93
Sabena 19.929 23.12
Demand Equation
Parameter I Parameter
Variable Estimate T-Ratio | Variable Estimate T-Ratio
Intercept 12.726 78.94 || P -0.490 -3.70
Pindex 0.249 9.44 || Gasp -0.822 -4.22
GDP 0.001 10.25 || Pra:l 9.265 7.80
Behavioral Equation
Parameter
Variable Estimate T-Ratio
0 0.112 3.58

Table 3.8 Fitted Share Values and Returns to Scale at Data Mean

Labor 0.322

Capital 0.069

Materials 0.609

Returns to scale
1.29
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Table 3.4 OQutput Price Elasticities at Data Mean
Price -0.551
Price Index 1.976
Gas Price -0.588
GDP 0.391
Rail Price 0.494

elasticities of substitution (see Table 3.6) show that capital, labor and materials are
all substitutable inputs.

Finally, we compute the average § values and mark-ups over the sample, by year,
and airline in Tables 3.8 through 3.10. Over the entire period, mark-ups averaged
22.8%. For the years 1976-86, mark-ups averaged 23.1%. Mark-ups started the
period at near 25% level and only declined slightly over the period. In 1987, when the
European market was opening to a more competitive environment, mark-ups started
to increase (this trend actually starts in 1986). However, after three years, this trend
stops, and mark-ups start to decline to levels lower than before 1986. The average
mark-up for the years 1989-93 is 17.8%. Despite inelastic demand, with other airlines
and railroads as close substitutes, high mark-ups in the European market could not

be sustained.

Table 3.5 Allen-Uzawa Elasticities of Substitution at Data Mean
Labor Materials Capital

Labor | -0.975 X X
Materials | 0.485 -0.304 X
Capital | 0.271 0.411 -4.872
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Table 3.6 Morishima Elasticities of Substitution at Data Mean
Labor Materials Capital

Labor | x 0.470 0.401
Materials | 0.480 x 0.435
Capital | 0.356 0.366 X

Table 3.7 Input Price Elasticities at Data Means
Labor Materials Capital

Labor | -0.314 0.295 0.019
Materials | 0.156 -0.185 0.028
Capital | 0.087 0.250 -0.337

Table 3.8 Competition Variable (§) Estimates,
Average Prices, Mark-Ups and Marginal Costs

0 P Mark-up MC
0.112 1.123 0.228 0.895
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Table 3.9 Competition Variable (#) Estimates by Year with
Average Prices, Mark-Ups and Marginal Costs

Year 6 P Mark-up MC

76 0.120 0.755 0.244 0.511
7 0.125 0.815 0.255 0.560
78 0.122 0.862 0.248 0.614
79 0.118 0.979 0.240 0.739
80 0.120 1.135 0.245 0.890
81 0.106 1.060 0.216 0.844
82 0.120 1.037 0.224 0.813
83 0.102 1.002 0.209 0.794
84 0.097 0.969 0.198 0.771
85 0.095 0.989 0.194 0.795
86 0.133 1.142 0.271 0.872
87 0.149 1.300 0.304 0.996
88 0.149 1.313 0.303 1.010
89 0.129 1.320 0.262 1.058
90 0.135 1.417 0.275 1.143
91 0.095 1.572 0.193 1.379
92 0.055 1.446 0.113 1.333
93 0.023 1.252 0.046 1.206

Table 3.10 Competition Variable (6) Estimates by Airline
with Average Prices, Mark-Ups and Marginal Costs

Airline 0 P Mark-up MC
Air France 0.086 1.111 0.175 0.935
Alitalia 0.145 1.114 0.295 0.818
British Airways | 0.033 0.976 0.107 0.869
Iberia 0.105 0.974 0.213 0.761
KLM 0.073 0.875 0.150 0.725
Lufthansa 0.073 1.328 0.150 1.179
SAS 0.182 1.435 0.371 1.063
Sabena 0.185 1.129 0.376 0.753
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3.7 Conclusions

In this chapter we have examined the productivities, efficiencies, and market conduct
of firms in the European airline industry. We have found what appears to be con-
vergence in several of the major sources of factor productivity to the standard of the
unregulated industry in the U.S., inefficiency differentials that are substantially mod-
erated by the competitive pressures induced by measures put in place through the
European Union, and little evidence that competitive pricing is violated on average.
Whether or not selected firms in the industry are candidates for takeover or what po-
tential exists for selected firms to join in strategic alliances, mergers, and/or simple
code-sharing arrangements is not explored in this paper. It would appear, however,
that a combination of aggressive cost-cutting, exploitation of the production capacity
of lower-cost U.S. carriers and marketing alliances will continue to drive the European
industry as the dynamic of the competitive market continues to rationalize airline firm

decision-making.
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Chapter 4

A Model of World Aircraft Demand

In this chapter, we outline a procedure that examines airframe and engine innova-
tions and the benefits of those innovations that accrue to equipment manufacturers,
airlines and passengers. We focus on the gross characteristics of an airframe/engine
combination: its size and operating characteristics as well as more detailed charac-
teristics of an airline’s fleet and individual aircraft within it (e.g., improved avionics
or benefits of maintenance that results from fleet standardization). The benefits that
occur through altering the menu of potential aircraft choices will be measured on
both a carrier specific and industry-wide level of aggregation.

We estimate the demand for both passenger and cargo services provided by each
major international carrier’s network. We link the carrier specific demand schedules to
a cost analysis of the carriers in term of the prices of the firms’ factors of production—
labor, fuel, materials, and flight equipment. Flight equipment will be modeled in an
especially detailed way by incorporating characteristics of the aircraft.

Our cost model is used to generate derived demand schedules for the factors of
production, in particular flying capital. The demand schedules will be functions of
the price of the factor of production, prices of other factors (for flying capital energy
prices will be of particular interest), characteristics of the aircraft used by the airline
system, and the level of passenger and cargo service.

Our research is both comprehensive and methodologically innovative. We look at
both the evolution of the demand and cost structure of the international airline firms
in Europe, North America and Asia in response to the integration processes underway

and the potential for expansion of air services in the Pacific Rim.
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We describe previous studies on airline cost in section 4.1. The data is described
in section 4.2. Section 4.3 describes the demand functions that we estimate using the
world data set. The cost function is explained in section 4.4. The forecasts of the
number of aircraft in a particular carrier’s fleet are given in section 4.5. Section 4.6

concludes.

4.1 Previous Research

Captain (1993) and Roeller and Sickles (1994) have studied static and dynamic de-
mand and supply models for the European industry from 1976 to 1990. Production
and cost data on the eight largest European carriers—Air France, Alitalia, British
Airways, Iberia, KLM, Lufthansa, Sabena, and SAS—are linked to demand data for
the same period collected for the respective countries—France, Italy, Great Britain,
Spain, Netherlands, Germany, Belgium and the three Scandinavian countries, Den-
mark, Sweden, and Norway. The demand facing firm k (from country k) at time t

is

logQre = Po+ BrPrt + B2 Pothert + B3Prait ke
+,64Pga.s,kt + IBSGDPkt + ﬂsA 10g CO’n.Skt + Ekt, (4-1)

where P is the average own-ticket price, Py, is index for the other n — 1 firms’
prices, P, is the price of rail travel, Py, is the retail price of gasoline (used as a
proxy for car travel expenses), GDP is the gross domestic product, and AlogCons
is the growth rate in consumer expenditures. Their findings were based on a demand
quantity variable that corresponds to a carrier’s annual revenue ton kilometers. The
European data were collected from the International Energy Agency, the OECD,
and from Jane’s World Railways. The gasoline prices and growth rate of consumer

expenditure for Denmark, Sweden, and Norway were weighted by their respective
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GDP’s in order to create single representative indices for the Scandinavian countries
that share a 50% equity stake in SAS.

A stochastic frontier cost function (TC) was specified as a nonhomothetic translog
in factor prices of labor, planes, and materials (including energy), average stage
length, load factor, network size, with additive treatments for percentage of fleet that
is wide-bodies and turboprop. A nonlinear system of cost, shares, and a behavioral
equation that allowed for deviations in marginal cost pricing was estimated jointly.
Estimates of the technological parameters of interest (returns to scale, substitution
elasticities, etc.) were comparable to those for U.S. carriers. Demand elasticities indi-
cated that air travel is elastic (—1.483 with a t-statistic of —8.93). On the aggregate
industry level, the cross-price elasticity (2.33 with a t-statistic of 8.94) indicated that
all the airlines were close substitutes and that the level of product differentiation was
minimal. The cross-price elasticity for rail travel was also relatively large (5.47 with
a t-statistic of 3.34). The estimated conduct parameter was 0.042 with a t-statistic
of 0.64, indicating no evidence of monopoly power. However, despite the popular
belief that competition marginally increased in the European industry after 1983,
the markups (P-MC) rose from 0.98% of average fares in 1982 to 8.99% in 1986.
Elsewhere (Good et al., 1992, 1993a,b, 1994, 1995; Park et al., 1993) the relative
efficiency differences between European and American airlines have been found to be
in the range of 15-18% for the 1976-86 period. The relatively higher prices charged
by European carriers may thus be due to the need to cover the partially subsidized
losses due to the technical inefficiencies engendered by the protected national carrier
status given to these firms (excepting British Air) during the period 1976-86 and
not to their ability to exploit their market power. Their results also point to cost
reductions on the order of 28% for wide-bodied aircraft while costs for turboprop

aircraft are on the order of 35% higher given a network configuration that had the
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same stage length and network size. Comparable models for the U.S. industry require
hub specific demand factors as well as the percentage of originating passengers that
travel from a hub on a particular carrier (for recent comprehensive studies of city-pair

demand see, e.g., Borenstein and Rose, 1992; Brueckner and Spiller, 1992).

4.2 Data

Our airline data set consists of a panel of the largest air carriers from Asia, Europe
and North America. These carriers supply approximately 85 percent of the scheduled
passenger traffic in the world. The carriers and countries are presented in Table 4.1.
These carriers are followed with annual observations from 1976 through 1994. A

complete discussion of the data appears in Appendix B.

4.3 Demand Equation

We develop a specific model of the international demand for an airline firm’s provision
of passenger and cargo service. Demand for a carrier’s service is driven by the car-
rier’s price (measured by the average ticket price for flights on carrier ) and the size
and economic prosperity of the market measured by population, per capita income,

and labor force participation rate. The period under consideration is 1977 to 1992.

Demand is defined as

N-1
logYyy = a+ Z o;CARRIER; + By log Py
=1

+Bpop log POPy + Bpcrlog PClLex
+Brrp log LEPy + €, (4.2)

where Y is revenue passenger mile originating at time ¢ in for carrier k, Py is the
average ticket price for service originating at time t for carrier &£, POPy is the popu-

lation at time t of country &, PCI, is the per capita income at time ¢ of country &,
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Table 4.1 List of Carriers and Countries by Geographic Area

Europe
Sabena (Belgium) Finnair (Finland)
Air France (France) Lufthansa (Germany)
Alitalia (Italy) KLM (Netherlands)
TAP (Portugal) SAS (Sweden, Norway, Denmark)
Iberia (Spain) Swissair (Switzerland)

British Air (United Kingdom)

Asia
Qantas (Australia) Air India (India)
Indiana Airlines (India) Garuda (Indonesia)
Japan Asia Airways (Japan) JAL (Japan)
Air New Zealand (New Zealand) Air Pakistan (Pakistan)
Philippines Airlines (Philippines) KAL (Korea)
SIA (Singapore) Thai International (Thailand)
North America
Air Canada (Canada) C P Air (Canada)
American (United States) USAir (United States)
Continental (United States) Delta (United States)

Eastern (United States) Northwest (United States)
Pan Am (United States)  Trans World (United States)
United (United States) Western (United States)
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LFP;: is the labor force participation rate at time ¢ for country k. The CARRIER;
represents the conventional treatment for firm fixed effects. This equation was es-
timated for Europe, Asia and North America separately. The countries included in
these areas are shown in Table 4.1.

Equation 4.2 was estimated using ordinary least squares (OLS)*. Estimates for the
three world demand equations are shown in Table 4.2. The estimates from these three
equations do not seem to be reasonable, given previous studies. The Europe equation
has a price variable that is insignificant and the sign on the population variable is
negative, which is not expected. For Asia, we have price having a positive effect on
demand. Further, the sign on the labor force participation rate is not what we would
expect. For the North American demand estimation, the population variable is quite
large. These poor estimate could stem from aggregation of the data and from omitted
variable bias in the demand equation. We would expect that less aggregated data
that included airport to airport travel would improve the estimates. Also, having a
variable for competitors’ prices on competing routes could only improve the quality

of the estimates.

4.4 Cost Equation

Cost function estimates for the airline industry are necessary to predict fleet size. We

do this under two different sets of assumptions:
e The carriers are cost minimizers.

e The carriers are profit maximizers.

LOLS estimation of a least squares dummy variable (LSDV) model such as (4.2) allows for correlation
between the regressors and the effects.
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Table 4.2 Demand Equation Parameter Estimates

Europe

Parameter
Variable Estimate T Value
Price -0.121 -1.423
Population -2.646 -13.173
Income 2.721 13.154

Labor Force 0.0137 5.533
R? value 0.9813

Asia
Parameter
Variable Estimate T Value
Price 0.290 3.715
Population 1.398 5.112
Income 1.579 10.840
Labor Force -0.007 -2.115

R? value 0.9735

North America

Parameter
Variable Estimate T Value
Price -0.682 -2.963
Population 6.511 3.320
Income 1.046 1.241
Labor Force 0.010 1.736

R? value 0.8534
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Under cost minimization, outputs are taken to be exogenous. With profit maximiza-
tion, outputs are endogenous variables. These different assumptions will affect how
our cost model will be estimated. This will be explained in the sections below.

We use a translog functional form for our cost equations. This is the most widely
used of the flexible functional forms (Green, 1993). The translog functional form
was introduced by Christensen, et al., (1973) as a production function that did not
impose homotheticity or separability. However, we do impose homotheticity in the

cost function. We also imposing symmetry of the cross-price derivatives.

4.4.1 Cost Minimization

After we impose symmetry, the cost function is given by

4 4 3
logC 2 . X A N N YR 1 26“10g p‘
+> % log Yi+ = Z Yii log2 Y: + nzlog Iog Yai=t

+Zm log Y + = Zm, log?Y: + 112log ¥ log Y3
=1 1-1

+64log prlog AA + 6slogprlog AS

+65PJ log pr + bwPW logpr + Bsilog SL

36
+pBislog LF + Z oa;AIR; + €, (4.3)

i=1
where p; is the :** input price, Y; is one of the two outputs (scheduled output, non-
scheduled and incidental output), AA is the average age of an airframe in months,
AS is the average size in seats of the fleet, PJ is the percentage of the fleet that are
jet aircraft, PWB is the percentage of the fleet that are wide-body aircraft, SL is the
stage length, and LF is the load factor.

The «;AIR; represent fixed firm effects in the cost equation. These firm effects
can be given the reduced form interpretation of omitted variables that are specific to

the firm and display little variability over the sample period, or can be given a more
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structural interpretation as time-invariant technical inefficiencies from a stochastic
frontier cost function (Schmidt and Sickles, 1984; Cornwell, et al., 1990).
The cost shares must add to unity and we must have linear homogeneity in input

prices. The following restrictions are applied to impose these conditions on the cost

function:

SB=136=0 3 &=0 (4.4)

i i€{A,5,J, W}

Our restrictions do not affect the way that outputs, output characteristics, capital
or its characteristics enter into the input share equations. Further, we still can con-
struct shadow prices of the output and technology attributes, but we assume that any
variation in these shadow prices due to variations in measured outputs, the quasi-fixed
capital stock, or in other attributes have second-order effects that can be neglected
or do not change appreciably during the sample period.

The cost share of capital is given by

4
Sk = Br+ Y bulogp: +6slog AA

i=1
+éslog AS + 6;PJ + dwPW. (4.5)
Summary statistics based on the translog and its associated share equations are-
provided by the Allen-Uzawa, Morishima and own- and cross-price substitution elas-
ticities, and several measures of returns to scale that extend from the short-run to
the long-run. The Allen-Uzawa elasticities of substitution and own-price elasticities

are given by

6. 8i; + SiS;
i 5.5,
bii + Si(1 — S;
0;; SE.; ) (4'6)
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Morishima elasticities are given by
oij = (05 — 0)Si,1 # 7. (4.7)
The own- and cross-price elasticities are

€ = a5
& = 0ii55,1#] (4.8)

€ = O;jS{,i # ]

Before we do any estimation, we normalize the data so that all the variables
are unity at the data median. We estimate each of these cost functions using the
cost function and all but one (materials) of the cost share equations using iterated
seemingly unrelated regression (ITSUR). Asymptotically, upon convergence, ITSUR
will be equivalent to the maximum likelihood estimates, that are invariant to that
cost share equation we leave out of the estimation. In addition to the restrictions
imposed for linear homogeneity in input prices, we restrict the price variables to
equal the mean of the data for the variable. The parameter estimates (excluding the
fixed effects), returns to scale and elasticity estimates are found in Tables 4.3, 4.4.1,
4.4.1,44.1 and 44.1.

These equations produced estimates that are reasonable. The fitted function is
concave in prices at the mean of the data as required. The function is concave at
99.6% of the data points. Also, the fit of the model is quite good, with a system
weighted R? value of 0.9672.

4.4.2 Profit Maximization

Under profit maximization, companies optimally choose outputs given a set of input

prices. This means that output is no longer exogenous and we must use a different
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Table 4.3 Cost Equation Parameter Estimates Under Cost Minimization

Parameter

Variable Estimate T-Ratio
Labor price 0.286 na
Labor price squared 0.008 1.117
Labor X energy -0.010 -2.369
Labor x materials 0.007 1.089
Labor x capital -0.005 -1.386
Energy price 0.202 na
Energy price squared 0.037 7.804
Energy x materials -0.007 -1.187
Energy x capital -0.020 -6.728
Materials price 0.429 na
Materials price squared 0.010 1.058
Materials x capital -0.011 -3.166
Capital price 0.083 na
Capital price squared 0.036  11.848
Scheduled demand 0.908  33.028
Scheduled demand squared 0.062 1.504
Nonscheduled demand 0.016 2.542
Nonscheduled demand squared 0.011 2.333
Scheduled x nonscheduled demand -0.032 -3.033
Stage length 0.137 3.061
Load factor -0.533 -4.765
Average seats 0.004 0.866
Average age 0.022 4.605
Percentage jets -0.014 -6.075
Percentage wide-bodied aircraft -0.012 -2.465

Returns to Scale is 1.082

Table 4.4 Fitted Share Equation Values at
Data Mean Under Cost Minimization

Labor Share 0.286
Energy Share 0.202
Materials Share 0.429
Capital Share  0.066
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Table 4.5 Allen-Uzawa Partial Elasticities of
Substitution at Data Mean Under Cost Minimization

Labor Energy Materials Captial

Labor -2.393 X X X
Energy 0.819 -3.036 X x
Materials | 1.060 0.922 -1.274 X
Capital 0.729 -0.511 0.629  -5.902

Table 4.6 Price Elasticities at Data Mean Under Cost Minimization
Labor Energy Materials Captial

Labor -0.685 0.165 0.455 0.048
Energy 0.235 -0.613 0.396 -0.034
Materials | 0.303 0.186 -0.547 0.042
Capital 0.209 -0.103 0.270  -0.392

Table 4.7 Morishima Partial Elasticities of
Substitution at Data Mean Under Cost Minimization

Labor Energy Materials Captial

Tabor % 0.920 0.871  0.894
Energy | 0.778 x 0.799  0.509
Materials | 1.002  0.943 x 0817
Capital | 0.440  0.358 0.433 x
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method to estimate the cost function above. We keep the same normalization and
the restriction on the parameter estimates. The estimation procedure we use is a
modification of iterated three-stage lease squares(I3SLS).

With I3SLS, right hand side endogenous variables are replaced by their predicted
value from a regression on these variables on a set of instruments. We have five such
right hand side endogenous variables in our cost function, and the predicted values
were not as good as desired. Therefore, we ran OLS using the log of one of the two
outputs and an the instrument set as the set of regressors. With the predicted values
from these regressions, we constructed the squared- and cross-output variables. The
results are shown in tables 4.8, 4.4.2, 4.4.2, 4.4.2 and 4.4.2.

The parameter estimates found under the assumption of profit maximization
should be questioned. The fitted function meets the requirement that it be con-
cave in prices at the mean of the data, and is concave at 98.8% of the data points.

The fit of the model is good, with a system weighted R? value of 0.9104.

4.5 Prediction

To predict the number of aircraft that would be in a particular carrier’s fleet over a

period, we do the following:

e Predict the growth of service demand over the period using an estimated de-

mand function;

e Predict the change in total cost per carrier over the time period using our

predicted demand growth and an estimated cost function;

e Use the capital share equation to predict what the total capital expense will be

over the period;
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Table 4.8 Cost Equation Parameter Estimates Under Profit Maximization

Parameter

Variable Estimate T-Ratio
Labor price 0.287 na
Labor price squared -0.018 -1.589
Labor x energy -0.024 -4.440
Labor x materials 0.053 5.312
Labor x capital -0.011 -2.574
Energy price 0.204 na
Energy price squared 0.039 8.313
Energy x materials 0.004 0.659
Energy X capital -0.019 -6.301
Materials price 0.426 na
Materials price squared -0.046 -3.768
Materials x capital -0.011 -3.081
Capital price 0.082 na
Capital price squared 0.040 13.154
Scheduled demand 0.884  19.494
Scheduled demand squared 0.407 9.634
Nonscheduled demand -0.009 -0.771
Nonscheduled demand squared 0.011 2.846
Scheduled x nonscheduled demand -0.025 -1.143
Stage length 0.014 0.182
Load factor -0.464 -2.353
Average seats 0.003 0.590
Average age 0.019 4.022
Percentage jets -0.013 -5.856
Percentage wide-bodied aircraft -0.009 -1.849

Returns to Scale 1s 1.132

Table 4.9 Fitted Share Equation Values at
Data Mean Under Profit Maximization

Labor Share 0.287
Energy Share 0.204
Materials Share 0.426
Capital Share 0.068
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Table 4.10 Allen-Uzawa Partial Elasticities of
Substitution at Data Mean Under Profit Maximization

Labor Energy Materials Captial

Labor -2.702 X X X
Energy 0.589  -2.966 X X
Materials | 1.429 1.045 -1.597 X
Capital 0.456  -0.348 0.628  -5.060

Table 4.11 Price Elasticities at Data Mean Under Profit Maximization
Labor Energy Materials Captial

Labor -0.775 0.120 0.609 0.031
Energy 0.169 -0.606 0.446 -0.024
Materials | 0.410 0.213 -0.681 0.042
Capital 0.131 -0.071 0.268  -0.342

Table 4.12 Morishima Partial Elasticities of
Substitution at Data Mean Under Profit Maximization

Labor Energy Materials Captial

Labor X 0.944 0.989 0.906
Energy 0.726 X 0.81¢ 0.535
Materials | 1.290 1.127 X 0.949
Capital 0.373 0.319 0.385 X
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e The number of planes in a period is equal to the total expenditure on capital

divided by the cost per plane.

It should be noted that we assume that capital prices remain constant over the pe-
riod. A baseline scenario is used to evaluate the model. Other scenarios are easily
implemented and can be used to forecast aircraft demand with any number of shocks.
The baseline changes in variables is given in Table 4.13.

From our estimates shown in Table 3, this scenario leads to an annual service
increase of 3.64% in Asia, 1.98% in Europe, and 8.32% in North America (see Tables
8-13). These numbers do not seem as reasonable as we would have hoped. The
3.64% service increase in Asia is below the observed growth rate of 10% in air travel.
The increase in demand in North America is much too high when compared to other
studies. Obviously, this will affect the quality of the forecast of the fleet size.

With these demand estimates in hand, we can use our estimated cost function
and capital share equation(s) to forecast future aircraft demand. We do this by first
forecasting total cost and capital share. Capital expenditure can then be found.

Aircraft in a fleet is then just the capital expenditure divided by the capital price.

Table 4.13 Baseline Variable Rates of Change

Percentage
Variable Change
Ticket Price —0.75
Per Capita Income 2.55
Population Growth 0.94
Labor Cost —1.60
Energy Cost 1.05
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4.5.1 Cost Minimization

Using the cost minimization procedure, we predict a 1.58% increase in planes in
Europe, a 3.10% increase in Asia, and a 7.65% increase in North America. These
results are being biased by the demand results. The 7.65% increase in fleet size in
North America is about two times as large as predicted in previous studies that looked
only at the US. Also, since the Asia demand growth seems to be too low, growth in
fleet size would be biased downward. The projected number of total aircraft, by
region, are given in tables 4.14 through 4.16.

4.5.2 Profit Maximization

For profit maximization, our models did not perform as well as we would have liked.
For example, we predict a 2.06% increase in planes in Europe, a 4.36% increase in
Asia, and a 12.6% increase in North America. As with the cost minimization, the
results also rely on questionable demand functions. The projected number of total
aircraft, by region, is given in tables 4.17 through 4.19.

4.6 Conclusions

In this essay, we develop a method to forecast fleet size in the international airline
industry. The model uses a demand model for air travel and links this to a cost
model for air travel production. From derived demand equations for the factors of
production, we can predict fleet size given any number of possible scenarios. Our
method allows for endogeneity of outputs.

While our cost model seems to be adequate, our demand data is somewhat lack-
ing. Qur estimates of demand growth seem unreasonable. Less aggregated world

demand data may be necessary to successfully forecast demand growth. Ticket prices
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Table 4.14 Total European Aircraft Demand and Air

Travel Demand Under Cost Minimization

Number of Scheduled Non-scheduled
Year Aircraft Service Service
1997 1256.29 32965811.36 3983023.17
1998 1276.04 33619911.04 4062053.37
1999 1296.15 34286989.23 4142651.65
2000 1316.60 34967303.40 4224849.16
2001 1337.35 35661116.23 4308677.58
2002 1358.47 36368695.51 4394169.33
2003 1379.95 37090314.40 4481357.38
2004 1401.77 37826251.47 4570275.40
2005 1423.97 38576790.83 4660957.69
2006 1446.53 39342222.21 4753439.28

Table 4.15 Total Asian Aircraft Demand and Air

Travel Demand Under Cost Minimization

Number of Scheduled Non-scheduled
Year Aircraft Service Service
1997 684.49 28868095.58 3187401.66
1998 705.69 29918593.76 3303389.90
1999 727.58 31007319.12 3423598.91
2000 750.16 32135662.75 3548182.28
2001 773.44 33305066.32 3677299.15
2002 797.47 34517024.04 3811114.57
2003 822.27 35773084.38 3949799.48
2004 847.86 37074852.27 4093531.05
2005 874.26 38423990.94 4242492.97
2006 901.50 39822224.22 4396875.54
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Table 4.16 Total North American Aircraft Demand and

Air Travel Demand Under Cost Minimization

Number of Scheduled Non-scheduled
Year Aircraft Service Service
1997 4993.28 115760228.11 2897669.36
1998 5373.53 125386999.54 3138643.32
1999 5783.16 135814345.81 3399656.99
2000 6224.45 147108843.78 3682376.89
2001 6699.86 159342606.94 3988608.14
2002 7212.12 172593745.78 4320306.00
2003 7764.06 186946866.60 4679588.27
2004 8358.87 202493611.61 5068748.96
2005 8999.84 219333244.23 5490272.71
2006 9690.62 237573282.63 5946850.93

Table 4.17 Total Europe Aircraft Demand and Air

Travel Demand Under Profit Maximization

Number of Scheduled Non-scheduled
Year Aircraft Service Service
1997 1275.92 32965811.36 3983023.17
1998 1301.46 33619911.04 4062053.37
1999 1327.71 34286989.23 4142651.65
2000 1354.69 34967303.40 4224849.16
2001 1382.42 35661116.23 4308677.58
2002 1410.94 36368695.51 4394169.33
2003 1440.26 37090314.40 4481357.38
2004 1470.40 37826251.47 4570275.40
2005 1501.41 38576790.83 4660957.69
2006 1533.28 39342222.21 4753439.28
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Table 4.18 Total Asian Aircraft Demand and Air

Travel Demand Under Profit Maximization

Number of Scheduled Non-scheduled
Year Aircraft Service Service
1997 713.39 28868095.58 3187401.66
1998 743.16 29918593.76 3303389.90
1999 774.59 31007319.12 3423598.91
2000 807.71 32135662.75 3548182.28
2001 842.64 33305066.32 3677299.15
2002 879.51 34517024.04 3811114.57
2003 918.43 35773084.38 3949799.48
2004 959.52 37074852.27 4093531.05
2005 1002.91 38423990.94 4242492 .97
2006 1048.79 39822224.22 4396875.54

Table 4.19 Total North American Aircraft Demand and

Air Travel Demand Under Profit Maximization

Number of Scheduled Non-scheduled
Year Aircraft Service Service
1997 5509.93 115760228.11 2897669.36
1998 6146.73 125386999.54 3138643.32
1999 6873.97 135814345.81 3399656.99
2000 7706.01 147108843.78 3682376.89
2001 8659.77 159342606.94 3988608.14
2002 9755.15 172593745.78 4320306.00
2003 11015.62 186946866.60 4679588.27
2004 12468.82 202493611.61 5068748.96
2005 14147.47 219333244.23 5490272.71
2006 16090.34 237573282.63 5946850.93
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from particular airports, competitors ticket prices, and unemployment data would
substantially improve the estimates. With airport specific data, we could include city
dummies to capture “tourism effects.” There are problems, however. Except for the
OECD countries, unemployment data is hard to find. While it may be difficult to get
better data on air travel demand, this will be of the greatest benefit with our model,
and we will be able to better predict world aircraft demand.

The airline industry is notorious for ordering equipment at points of peak de-
mand, but getting delivery at a point when demand is slow. If one were to take
common approaches and assume that carriers have myopic and naive expectations
about future demands for air travel, the negative correlation between the level of new
traffic and the number of aircraft deliveries would imply irrational behavior on the
part of airline managers. Our experience with these short run models is that they do
not work well and also typically imply negative shadow values of increased capital.
There are several avenues that we might employ to improve these traditional models
and obtain more sensible results. First we might directly incorporate the lead time
necessary to acquire a new aircraft. This may prove difficult since there are different
kinds of markets for new equipment and since varying constraints are imposed by
institutional arrangements and changes in tax law. For example, a carrier has consid-
erably more flexibility in the disposition of owned equipment than either equipment
acquired through an operating lease or capitalized lease. This is somewhat compli-
cated by the fact that lead time is a function of the overall demand for equipment of
that particular size/fuel efficiency configuration.

Second, we might more realistically capture the nature of expectations in our
models. Firms use more than a single period of information in developing their
expectations about future demands. The modeling strategy thus would be to identify

a lag structure of past traffic demands in the construction of expectations regarding
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future demands. This approach is conceptually easier to describe than to implement.
Even fairly stylized and parsimonious lag structures complicate the firm’s optimal
control problem greatly and may necessitate the use of numerical instead of analytic
solutions to construct equipment demands.

A final necessary detail for our modeling approach is that it be able to address a
wide range of characteristics of the fleet including a behavioral model that explains
why some of these characteristics have been adopted and others passed over. Not the
least of these considerations is that some innovations have not been available (such as
the use of 800 passenger jet equipment, or very fuel efficient engines), although they
have been discussed for many years. Further, it is clear that equipment is chosen to

serve a particular route structure.
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Chapter 5

Bootstrap and Heteroscedasticity and
Autocorrelation Consistent Covariance
Estimators

5.1 Introduction

Bootstrapping has become a powerful technique for estimating sampling distribu-
tions of statistics since its introduction by Efron (1979). There are good reasons
for the substantial interest in bootstrapping methodologies. One is that it allows a
researcher an alternative to computing asymptotic distributions of statistics that are
intractable. Under some regularity conditions, bootstrapping will provide distribu-
tions to test statistics and estimators that are at least as good as first-order asymp-
totics. Indeed, when bootstrapping asymptotically pivotal statistics, bootstrapping
will provide an asymptotic refinement over standard first-order asymptotic theory
(Hall, 1992; Horowitz, 1997, 1999). Manski (1975, 1985), Hardle, et al. (1991), West
(1990), and Brown and Newey (1992), among others, have adopted the bootstrap as
an alternative to utilizing the asymptotic distribution.

Bootstrapping procedures have been expanded to cover the case where errors
are conditionally heteroscedastic. Liu (1988) introduced the “wild” bootstrap by
extending a bootstrapping procedure proposed by Wu (1986). Hardle and Marron
(1991) and Hardle and Mammen (1993) use the wild bootstrap in nonparametric
regression.

There are also bootstrapping procedures to cover the case where there is temporal

dependence in the error structure. These methods are based on blocking the data,
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and are divided into methods that have non-overlapping or overlapping blocks. Both
methods were first suggested by Hall (1985) for use with spatial data. For univariate
time series data, Carlstein (1986) suggested non-overlapping blocks, while Kiinsch
(1989) proposed overlapping blocks. Hall, et al. (1996) suggest rules for optimal
block length given ones objective of the bootstrapping procedure. Politis and Romano
(1994) suggest using random block lengths. They point out that fixed block lengths
causes nonstationarity in the bootstrapping process.

While the wild bootstrap and blocking procedures are a great improvement when
dealing with non-iid errors, results obtained from these procedures will be misleading
when they are used in inappropriate settings. For example, the wild bootstrap will
not reproduce any time dependence in the error structure. Block procedures will not
capture any conditional heteroscedasticity in the data. These problems will produce
unreliable results when either the wild or block bootstraps are used in inappropriate
settings.

Kernel-based heteroscedastic and autocorrelation consistent (HAC) covariance
matrix estimator are alternatives to bootstrapping t-statistics. The general covari-
ance structure can be estimated by a HAC covariance matrix estimator and therefore
eliminate the need for bootstrapping. Hansen (1982), White (1984), Gallant (1987),
Newey and West (1987), Robinson (1991), Andrews (1991), Andrews and Monahan
(1992), and Hansen (1992), among others, have utilized kernel estimators to produce
HAC covariance matrix estimators. However, there are problems with the HAC co-
variance matrix estimators as well. Kernel based HAC estimation has been shown to
perform quite poorly in certain contexts (Andrews, 1991). Also, these kernel-based
estimators will converge at rates slower than o,(n~'/2).

Data seldom display only serial dependence or heteroscedasticity. Elements of

both are often present. The specification of correlation patterns and the structure
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of variance heterogeneity on a prior: grounds is problematic. Moreover, samples are
rarely large enough to justify the slow rates of convergence which plague the HAC
kernel-based alternatives to bootstrapping. We also examine parametric methods
using inferences based on ordinary and generalized least squares. Our results question
the robustness and usefulness of bootstrapping procedures when the data suffer from
the standard problems of serial correlation a.nd/;)r heteroscedasticity which plague
most econometric models.

The chapter is organized as follows. In section 5.2 we discuss the bootstrapping
procedures that have been proposed to handle a variety of data generating processes.
Section 5.3 outlines the design of a set of Monte Carlo simulations comparing these
various inferential methods as well as those based on conventional asymptotic formu-
las, in particular the ordinary least squares and the generalized least squares estima-

tors. Section 5.3.2 discusses the results of the simulations.

5.2 Inferences Based on Bootstrapping and Kernel Based
Procedures When the Data Exhibits Temporal Depend-

encies and Variance Heterogeneity
Throughout this paper we consider the linear regression model
Y =XB+¢, (5.1)
where Y is N x 1, X is N x k, and € is N x 1. We assume that the regressors are
strictly exogenous and that E(e) = 0, Cov(e) = Q2.
5.2.1 The Standard Bootstrap

The bootstrap introduced by Efron (1979) is quite well known and easy to imple-
ment. Equation (5.1) is first estimated by ordinary least squares (OLS) to obtain the
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residuals

e=Y — X5, (5.2)
These are used to construct a bootstrap sample
Y*=XB+¢€, (5.3)

where €* is an IV x 1 vector of residuals drawn randomly, with replacement, from the

OLS residuals € The naive bootstrap estimates g as
Bt — (X,X)—IX,Y‘. (5.4)

By repeating the construction of bootstrap data sets the distribution of the parameter
estimates are constructed. Variance estimates and/or confidence intervals are based
on this distribution. _

Let F. be the true cumulative distribution function (CDF') of the errors € in (5.1).
If the errors in (5.1) are iid, then feasible nonparametric estimate of the CDF of € is
given by the empirical CDF of € where each residual has a probability of -},- If we
take B bootstraps from the empirical CDF, where B is suitably large, then for the
b** bootstrap,

1

PE =)=+ (5.5)

Then,
E(A) =B ((X'X)'X'Y") =8.
The variance of the bootstrapped residuals is
2 2« 1K,
Z=E en) =]—V,—n2=:16n=s
The bootstrap variance estimator differs from the MLE

N -k
N ?

N 2

2 __ _1
where s* = ¢ ¥ no €n-

estimator under the assumption of normality by only a scale factor. In this ideal
case, the standard bootstrap does not buy us much. However, if the assumption of

normality can not be made, then the bootstrap is of use.
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5.2.2 The Pair Bootstrap

In cases where (5.1) have nonconstant variances, the bootstrap can be implemented
by resampling observations (Y, X) randomly with replacement. This is known as the
pair bootstrap. Equation (5.1) is first estimated by OLS to obtain

B=(X'X)"XY. (5.6)

Then, we construct a bootstrap sample (Y™, X*) by resampling observations with

replacement. From these bootstrap samples, we obtain
B = (X™X™)7tX"™Y™. (5.7)

By repeating the construction of bootstrap data sets the distribution of the parameter
estimates are constructed. As with the standard bootstrap, variance estimates and/or
confidence intervals are based on this distribution. Since € in (5.1) is assumed to be
beteroscedastic, the standard bootstrap cannot be implemented by resampling OLS

residuals independently of X.

5.2.3 The Wild Bootstrap

The wild bootstrap was originally developed by Liu (1988) to deal with the problem
of replicating a data generating process in which variances are nonconstant.

First let F;, 2 =1,..., N be the unique two-point distribution such that

E(Z|F:) =
E(Z?|F:) = &
E(Z%|Fy) = €
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Here, Z is a random variable with distribution F;. The distribution of Z is given by

1+V3 2 (1—V5)e:

2v5 ? 2
P(Z=z)={ 1-15, 2= 08 (5.8)
0, otherwise

The wild bootstrap is carried out by drawing random samples €; from F;.

5.2.4 The Blocked Bootstrap

When the structure of serial correlation in a regression model is not known, the
bootstrap can be implemented by dividing the data into blocks. Carlstein (1986)
suggested that the blocks be non-overlapping, while Kinsch (1989) used overlapping
blocks. Overlapping block structures have higher bootstrap estimation efficiency than
non-overlapping blocks. However, the efficiency gain from using overlapping blocks
is small. Hall, et al. (1995) compared the two blocking methods for computing
the distribution of the sample mean. They reported that the asymptotic root mean
squared error was reduced less than ten percent as a result of using overlapping
blocks as opposed to non-overlapping ones. Since there is no computational burden,
overlapping blocks are used in the experiments below.

A bootstrap sample is again constructed from the OLS residuals. First, form
blocks of length I, Ly = {€,€k41,---,6kst-1} for £ =1,2,...,b, whereb=N —[+1
and IV is the length of €& Next sample the blocks with replacement to create & =
(L1, L3,..-, L,'V/,). These block bootstrapped residuals are then used to construct a
bootstrap sample

Y*=XB+F. (5.9)

and the bootstrap estimate §*:

Br=(X'X)"' X'y (5.10)
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This process is repeated many times to build up the distribution for the parameters.

Asymptotic refinements cannot be gained by using independent bootstrap sam-
ples if the data generating process produces dependent data. If one has a parametric
model, such as an ARMA model, that allows the data generating process to be re-
duced to a transformation of iid random variables, then the standard bootstrapping
procedure can be used. However, if the process cannot be transformed suitably, or a

parametric model is not known, then blocking allows the use of the bootstrap.

5.2.5 Heteroscedasticity and Autocorrelation Consistent (HAC) Covari-

ance Estimators

White (1982) was the first to note that consistent estimation of the variance of the
(inefficient) least squares estimator of # did not require a consistent estimator of all
unique elements of the N x N matrix 2, only the unique elements of the k£ x £ matrix
X'Q0X. However, this is just the variance of v = z’e. If we could consistently (at
the rate n~1/2) estimate the variance of v then we could construct a root-n consistent
estimator for the variance of the least squares estimator of § without requiring the
structure of the variance to be specified e priori, or with an estimator that converges
at a slower than n!/? rate. The motivation behind the heteroscedastic and autocor-
relation consistent (HAC) estimator is that the ordinary least squares estimator of
has an asymptotic variance that can be consistently estimated by a finite number of

parameters. Specifically, since the distribution of
Bots — N(B, (X'X)H(X'QX)(X'X)™) (5.11)

and since X'QQX can be consistently estimated by a finite number of parameters,
a kernel based smoother is a good candidate for such a consistent estimator. One

such HAC estimator developed by Andrews and Monahan (1992) utilizes a first-order
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vector autoregressive (VAR) prewhitening scheme. First let!

16t ZTi2€1 - Tik6s
T21€2 To2€2 - Tak€2

=)
Il

(5.12)

| TTi€r TT2€T - TTiET |

where & is the tth OLS residual from the estimation of (5.1). The VAR is specified
as

Te=Ti1A+v, t=23,...,T, (5.13)

and can be estimated by ordinary least squares. This estimator for A is adjusted
using a single value decomposition so that Iz — A is not singular. Next, the whitened
kernel HAC estimator, X0x w 1S computed
T T 2 '\ By -
X'0NX, = mj=§+1 kqs (33;) =),

where
Be(j) = T in zthZé:,-, 720

F i Peritl 5 <0
and S7 is a data-dependent bandwidth parameter. A data-dependent plug-in estimate

of the optimal value determined by Andrews (1991), given the QS kernel kgs(-) defined

by

kos(e) =ty 2] — cooma/s))

is given by
Sr =1.3221(a*(2)T)'3

IWhen considering temporal dependence it is more natural to utilize the time subscript. Clearly
this is just a labeling convention. The distinction between the i and t subscripts is apparent for the
particular type of model we consider.
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where
k

- 4754 : Ga
=@ = (Loplag) (Soa o)
The parameters (p,, 02) are the autoregressive and variance parameters and the
w, are the weights attached to estimates of each of the k£ diagonal elements of .
We use the weights used by Andrews and Monahan (1992), where w; = 0, w; = 1,
1=2,...,k.
The estimator of X QX w is then recolored to obtain the VAR prewhitened HAC

kernel estimator of

X OXpee = DX QXD

where

D=(I.— A"

5.3 Monte Carlo Evidence
5.3.1 Design of the Experiments

In order to determine the usefulness of these procedures in finite samples, we con-

ducted a set of Monte Carlo experiments. A single equation model was constructed.
The model is
Y=X3+e¢ (5.14)

where X is a T x k matrix and £ = 3 with the last column of X being a constant.

The first two regressors are i.i.d. normal random variables.?

2To speed up computational speed, the z's are then transformed in the following way. We start with
two vectors of normally distributed data, z; and z2, which we use as our exogenous variables. These
two vectors are combined into a T x 2 vector Z. Let Z; be the mean of vector z; and = = (ZT1,Z3)-
We new construct T = Z — T which provides us with a transformation

* :(lzlz)%
. =z -z
t
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The vector 8 = [2,0, 3]. The same § was used in all the experiments. The sample
sizes of the experiments were set to 30, 60 and 120. Several different error structures
were used. Each experiment was replicated 2500 times.

For each replication, we test the hypothesis that 8, = 0 using one of seven meth-
ods. All the methods use a t-statistic and either the asymptotic critical value or a
bootstrapped critical value to either accept or reject the null hypothesis. All the tests
are two-sided.

The first four methods utilize the bootstraps to find a critical value z, to determine
whether to reject the null hypothesis of B2 = 0. We use the standard bootstrap, the
pair bootstrap, the wild bootstrap, and the block bootstrap.

In each of the Monte Carlo replications, the following procedure was followed:

1. Generate a data set to be estimated from equation (5.14) where 3, is set equal

to 0. Estimate 8 using OLS and compute the

2. Generate a bootstrap sample of size ¢ from the residuals of the constrained OLS
estimate of . The method of constructing the bootstrap sample depends on
the bootstrap method used. That is, the bootstrap sample is Y~ = X B. + €,
where 3, are the constrained OLS estimates of # and & are generated from
the standard, block, or wild bootstrap. For the pair bootstrap, we generate
a bootstrap sample of size ¢ by drawing observations (¥, X)* randomly, with

replacement, from the original data set.

3. From this bootstrap sample, estimate a bootstrapped B* using unconstrained

OLS and & = Y* — X3~

such that if 1 is a vectors of ones, and = = (1,z"), then
1
'2) = =TI
(='z) T

where I is the identity matrix.
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4. Next, compute the bootstrapped t-statistic, T*, for testing Hj : 8 = 0. T for

the standard bootstrap is the standard t-statistic

B:

E — 1

std — o« !
22

where s3, is based on € using the standard covariance estimator. For the pair

bootstrap, T is
. _Bi—B

wsild swEZ

?
where f; is the unconstrained OLS estimate and sw}, is estimated using the
White heteroscedastic consistent covariance matrix using & and X. For the

wild bootstrap, T is

B.*
* =
wild sw§2 )

where swj, is estimated using the White heteroscedastic consistent covariance
matrix using & and X. The block bootstrap calculates T as
B

Ty = ——
block s h;2 ’

-~

where sk, is estimated using the HAC covariance matrix, again using € and
X. Hall, et al. (1995) note that the optimal block length for estimating a two-
sided distribution function is [ ~ n'/®, Optimality is defined as minimizing the
asymptotic mean-squared error of the block bootstrap estimator. Therefore, in
our simulations, we use a block of length two, since 30'/° ~ 1.97, 60Y/° =~ 2.27
and 120'/° ~ 2.61. For n = 120, perhaps a block length of three would be

better, but we kept the length two for consistency between simulations.

5. By repeating this step B times, we have four bootstrap distributions for 7%,

one for each of the bootstrapping methods used.

6. With the B bootstrap estimates of 77,4 = 1,..., B, we find the critical values

zo by ordering |Ty| and finding the p** percentile [T;| = (1 — g)|T;| + g|T 1l
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where j = int[(B+1)p] and ¢ = (B+1)p — 5. Then, we set z,

79

= IT;L

where a = 1 — p. So, for a nominal five-percent rejection rate, we find the

95" percentile of the ordered T} statistics and reject the null hypothesis when

IT| > 2o = |T1-

The fourth method used is the standard t-statistic for testing Hp : 5; = 0:

E.
Tstd = "1'1

1

(5.15)

where s;; is the square-root of the #ith element of s?(X'X ). Here, s? = €¢/(T — k).

We then reject the null hypothesis if |Ts:q| > 1.96 at the five-percent confidence level

and [Ty > 2.575 at the one-percent confidence level. The results of the simulations

using this method are shown in the table rows labeled std.asy.

The fifth method used the t-statistic based on the White (1980) heteroscedastic

consistent covariance matrix estimator. We calculate Tyhite as in (5.15), except the

term s;; is replaced with the square root of the ¢ith element of
(X' X)X QK white(X'X)

and where

T 1
X'Qth{te = T Z éztzé-
t

As with the standard t-statistic, we reject the null hypothesis if [Typite| > 1.96 at the

five-percent confidence level and [Tyhite] > 2.575 at the one-percent confidence level.

In the sixth method, the t-statistic is based on the Andrews and Monahan (1992)

HAC estimator X QX hac- Thus Thee is computed as T5;q except that s;; is now the

square root of the #7th element of the estimated HAC covariance matrix

(X' X) ' XT0X pae (X' X)L

This too is an asymptotic test so we reject the null hypothesis if |Th,c| > 1.96 at the

five-percent confidence level and |Thqe| > 2.575 at the one-percent confidence level.
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5.3.2 Monte Carlo Results

The results of the Monte Carlo study are shown in Tables 5.1 through 5.6. Note that
if the the true size of the test is 5%, then the standard error of a particular simulation
based on NS=2500 simulations is 0.44%. Therefore, 2 95% confidence interval on a
5% rejection rate is [4.15%, 5.85%)] . When our experimental results yield rejection
probabilities within such a range, we indicate those experiments with a *. For a test of
one-percent, the 95% confidence interval for 2500 Monte Carlo simulations is [0.61%,

1.39%]. Heteroscedasticity and serial dependencies are modeled as
1/2
€ = (1 +z2, + x%t) ! Vg, (5.16)

where v; = pvi—1 + u¢ and us ~ N(0, 1).

In Table 5.1, the errors in our model are iid, N(0,1) random variables. The
standard asymptotic test performs quite well, even in small samples. The other
asymptotic test did not do as well, however. In small samples (¢ = 30), the White
and HAC asymptotic tests reject from two to five times too much, depending on the
nominal size of the test. The standard bootstrap performs as well, or better, as the
asymptotic test. The other bootstrap methods performed very well. These methods
seemed to perform as well as the standard bootstrap. The one exception is the pair
bootstrap. It performs better than the White or HAC asymptotic tests, but not as
well as the other bootstrapping methods.

In Table 5.2, the errors in our model are iid random variables. The distribution
is t3. The standard bootstrap performs well, as do the pair, the wild and block
bootstraps. The HAC estimator does not perform well, but it improves as sample
size gets larger. These results hold for the case where the errors are ¢s, as seen in
Table 5.3. The pair bootstrap does well in these tests, though it does not perform as

well as the wild bootstrap.
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Table 5.1 Homoscedastic Normal Errors with 02 =1
t=30 t =60 t =120
method | 5% 1% 5% 1% | 5% 1%
std.asy 5.64* 1.52 | 5.68 1.84|5.04~ 1.20
white.asy | 10.40 4.08( 7.56 248 | 5.92 148
hac.asy | 12.28 5.16 | 7.64 3.00| 6.36 1.80
std 516* 148 | 5.92 2.00 | 5.08* 1.36
wild 4.76 0.72% | 5.44* 1.24~ | 5.24* 1.40
block 5.64~ 1.00%) 6.08 232 5.04 1.60
pair 6.00 140 | 6.60 220/ 590 1.80

Table 5.2 Homoscedastic t-Distributed Errors with 3 Degrees of Freedom
t=30 t =60 =120
method | 5% 1% 5% 1% 5% 1%
asy.std | 5.60* 1.80 | 5.20 1.30" | 5.40 1.40
asy.white | 8.40 2.50 | 6.00 1.80}|5.70~ 1.40
asy.hac | 11.20 480 | 7.20 220 6.90 1.40
std 4.84* 0.88~ | 5.14* 1.08 | 4.88* 0.94"
wild 6.92 1.72] 6.72 1.60 | 5.64* 1.30
block 482 0.98* | 5.34* 0.92 | 4.76~ 1.12"
pair 3.80 0.605.000 160|550 1.70

Table 5.3 Homoscedastic t-Distributed Errors with 5 Degrees of Freedom
t =230 t =60 t =120
method | 5% 1% | 5% 1% | 5% 1%
asy.std | 5.100 1.50| 6.20 1.20|5.20 1.30"
asy.white | 9.10 2.60| 7.60 2.20]| 6.00 2.10
asy.hac | 10.20 4.60| 8.00 2.70| 6.60 2.80
std 434 1.047 | 496 1.02|5.02° 0.96"
wild 6.24 1.38* | 5.66 1.40|5.06% 1.20"
block | 4.86® 0.86~ | 5.26 1.20™ | 4.68~ 1.06"
pair 5.20* 1.70 | 5.50* 1.20* | 5.90 1.60
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In Tables 5.4, 5.5, and 5.6, the errors are both autocorrelated and heteroscedastic.
These errors are generated from (5.16). The wild bootstrap seems to be the best
method in this situation. Its size tends to be closer to the nominal size in small
samples. When the sample sizes get larger and the HAC estimator improves, the wild
bootstrap still performs well. The pair bootstrap works well in cases where ¢ = 60

and the autocorrelation coefficient is close to zero.

Table 5.4 Autocorrelated Heteroscedastic Errors with ¢ = 30
p=—0.99 p=—09 p=—-07 p=—05
method 5% 1% 5% 1% 5% 1% 5% 1%
asy.std |22.30 5.30 |28.50 12.60|31.80 16.30 | 33.00 17.70
asy.white | 10.60 2.30 | 11.10 4001 13.80 6.20 | 15.90 5.40
asy.hac | 33.20 14.32 | 4.00 1.i6*|10.86 3.92|14.72 6.88
std 3.58 0.58 | 4.28 1.12*|11.60 2.86]|12.36 340
wild 9.36 1.64| 4.00 0.94=| 6.44 0.98*| 4.92 0907
block 2.72 0.52| 3.96 1.14;12.66 3.64|14.36 4.24
pair 1.50 0.20) 3.60 0.80~| 4.30~ 1.10| 3.90 0.90°
p=-—03 p=-0.1 p=0.1 p =03
method 5% 1% 5% 1% 5% 1% 5% 1%
asy.std | 32.10 18.00 | 32.40 19.00 | 33.70 19.60 | 33.60 19.60
asy.white | 15.70 6.00 | 16.30 6.20 | 16.80 6.60 | 16.50  6.30
asy.hac | 17.60 9.08 |12.90 5741564 7.86 | 13.74 5.90
std 15.04 4.58 8.48 234 111.78 3.72 | 10.30 2.78
wild 530 1.04| 6.28 164 7.16 2.16| 35.96 1.267
block 13.38 4.04| 846 2.1211.58 3.52|10.96 3.06
pair 3.60 1.00°{ 3.80 1.000| 4.160 1.00| 3.60 0.90"
p=0.5 p =07 p=09 p =099
method 5% 1% 5% 1% 5% 1% 5% 1%
asy.std | 34.30 18.80 | 36.00 20.00 | 38.50 20.00 | 27.10 10.20
asy.white | 16.10  5.50 | 16.50 4.30 | 16.30 3.40 | 17.00 2.50
asy.hac | 18.70 9.58 | 1246 5.14 | 17.14 5.78 | 41.72 19.94
std 12.34 4081 9.64 284 1.00 0.08} 0.74 0.10
wild 7.36 1.84 }10.40 3.58| 1.48 0.18{ 3.50 0.68
block 1570 558 | 794 166 198 0.14| 094 0.12
pair 3.60 060| 3.20 060} 3.00 040 090 0.00
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p =—0.99 p=-09 p=-—0.7 p=-—0.5

method | 5% 1% 5% 1% 5% 1% 5% 1%
asy.std |{5.30° 0.90* | 14.60 4.20 | 19.20 8.10 | 20.10 8.80
asy.white | 2.30 0.40 7.40 1.70 | 10.60 3.30 | 10.40 3.70
asy.hac |4.52* 0.92* [ 25.64 1294 | 5.36* 1.66| 7.66 2.74
std 236 0.24]23.96 8.70| 7.24 1.48|13.14 4.30
wild 204 0381]11.18 3.00| 4.00 0.82*}f 7.96 2.22
block 2.04 0.321]29.34 13.46| 6.38 1.56 | 12.04 3.80
pair 0.70 0.20 3.30 0.90* | 5.60 1.50 | 5.00 1.60

= 03 | p=—01 P =01 =03
method | 5% 1% 5% 1% 5% 1% 5% 1%
asy.std | 18.50 8.20 | 16.70 7.50 | 1640 7.30 | 16.60 6.80
asy.white | 10.30 340 | 9.40 3.00| 8.60 2.80| 850 2.40
asy.hac [10.34 392 832 2941030 346} 9.76 3.08
std 16.98 5621|1148 3.36 [11.72 342} 9.04 2.08
wild 7.72 2.04| 6.66 1.68| 542 1.14*| 540" 1.14
block 15.16 4.98 | 11.54 3.14 (11.30 2.98 | 9.26 2.38
pair 5.00% 1.20* | 4.50* 1.20%| 4.10 1.30| 4.10 1.20"
p=0.5 p=0.7 p=0.9 p=0.99

method | 5% 1% 5% 1% 5% 1% 5% 1%
asy.std |16.80 7.0017.10 6.00 1290 3.80| 3.00 0.80
asy.white | 9.10 2.50 790 240 6.10 1.30) 1.60 0.40
asy.hac 8.74 3.04113.12 4.90|14.02 5.06|5.24 1.34"
std 9.54 2601578 4.88)19.30 6.66| 3.18 0.54
wild 432 0.84°|11.00 3.63| 6.3¢ 1.12*| 1.04 0.10
block 9.86 2.78 | 13.48 4.38}16.56 5.04| 3.06 0.72
pair 4.00 1.00™ 3.50 0.70*| 2.90 0.50¢{ 1.10 0.30
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Table 5.6 Autocorrelated Heteroscedastic Errors ¢ = 120

method | 5% 1% 5% 1% | 5% 1% 5% 1%

asy.std 6.20 2.70 | 20.50 8.4015.30 6.60 |15.10 5.90
asy.white | 1.90 0.40 | 6.50 1.40 { 5.50* 1.00* { 4.90* 1.10"
asy.hac | 6.10 2.04 | 3.20 0.54|4.56* 0.88*| 8.10 2.84

std 412 1.02*| 6.86 1.80|10.12 2.54 | 14.72 5.62
wild 1.72 0.38 | 2.58 0.40 | 4.66* 1.12*| 7.42 2.06
block | 5.18* 1.24* | 5.50* 1.18*| 7.82 1.86 | 13.30 4.68
pair 0.60 0.00| 1.60 0.20| 1.30 0.20( 1.70 0.40

p=-—0.3 p=-0.1 p=0.1 p=0.3
method | 5% 1% | 5% 1% | 5% 1% | 5% 1%

asy.std | 16.20 6.30 [ 16.60 7.40 | 17.70 8.10 | 19.90 8.80
asy.white | 540 1.40| 6.50 1.60| 7.30 150 | 8.00 2.60
asy.hac 754 196} 688 1.78| 874 250 | 7.96 2.36

std 13.04 448 )11.80 3.62|14.12 4.82|13.30 3.70
wild 4.58" 1.00" | 5.48* 1.12*| 5.74* 1.12* | 5.10* 1.14*
block 14.86 4.82 {11.58 3.48|13.78 4.38 {12.90 3.96
pair 190 050| 220 0.60 2.60 0.70] 3.80 0.90~

=05 = 0.7 =09 > —0.99
method | 5% 1% 5% 1% 5% 1% 5% 1%

asy.std |23.70 11.30 | 31.80 17.90 | 42.20 29.80 | 60.90 40.70
asy.white | 10.20 3.40 [ 16.20 5.90 | 26.10 13.80 | 25.00 5.20
asy.hac 884 2.74| 6.74 194 9.36 3.38 | 64.26 50.68

std 9.16 2.60|12.94 4.00| 9.06 2.34|57.08 20.58
wild 424 0.70*| 3.62 0.62] 1.60 0.12 |52.08 26.12
block 9.42 2.46|14.24 5.00|11.54 3.84|52.72 14.98
pair 490" 150| 820 2501540 6.40 | 3.20 0.90"
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5.4 Conclusions

In this chapter, we examined four bootstrapping procedures: the standard bootstrap;

the pair bootstrap; the wild bootstrap; and, the block bootstrap. We also examined

the heteroscedasticity and autocorrelation consistent covariance matrix estimator of

Andrews and Monahan (1992). We briefly outlined the procedure for using all four

bootstrap procedures. We explained how to use the Andrews and Monahan (1992)

HAC covariance matrix estimator.

To determine the usefulness of the different bootstrap procedures, as well as the

HAC covariance matrix estimator, we conducted several Monte Carlo experiments.

These experiments were designed to examine the performance of the bootstrap esti-

mators where the ideal conditions for all the methods was violated to some degree.

However, we conducted some experiments for the iid random error case.

We found that when the errors of a single-equation model were iid, the standard

asymptotic test works quite well, even in very small samples. The standard and wild

bootstraps both performed well in these cases. When errors were drawn independently

from a t-distribution, the standard and block bootstraps both worked well.

When our model included errors that were both heteroscedastic and autocorre-

lated, the performance of all the estimators suffered. In small samples (¢ = 30), the

HAC estimator rejected a null hypothesis that was true about three times the nominal

rejection rate.

The pair and wild bootstraps did not perform too badly in the cases where the au-

tocorrelation coefficient was small (Jp| < 0.3). The standard bootstrap never worked

well in these cases. The block bootstrap did not perform well in these cases.

Our results suggest that the bootstrap does not work well when the data genera-

tion process violates the assumptions of the bootstrap method in some fashion. Also,

the HAC estimators are of little use when sample sizes are not large.
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Chapter 6

Bootstrapped Aircraft Cost Model Confidence
and Prediction Intervals

6.1 Introduction

Panel data sets, data sets that contain both time series and cross sections, are very
common in economics. Qur U.S. and world data sets are two examples of such data
sets. There are often complex covariance structures that make calculating asymptotic
distributions difficult at best.

In addition, we often calculate elasticities and other functions of the parameters
that are highly non-linear. It is sometimes impossible to work out asymptotic dis-
tributions for such estimates. The bootstrap is a technique that allows us to find

confidence intervals for these estimates.

6.1.1 Bootstrap Confidence Intervals

There are several detailed comparisons of bootstrap confidence intervals {e.g., Diciccio
and Romano, 1988 and Hall, 1988, 1992]. We will briefly review some of the ideas.
Let B be an estimate of a parameter 8 based on the sample X. Let 4* be a bootstrap

estimate of 8. One (1 — 2a)100 percent confidence interval for 8 is
Clg = [FY(a), F'(1-0)], (6.1)

where F(z) = Pr(3~ < z|X) is the bootstrap distribution function of #=. This method
is known as the percentile method. It has been shown in Diciccio and Romano (1988)

to have some problems in small samples.
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Efron (1982) introduced the bias correction or BC method to improve upon the
percentile method. The method “centers” the empirical distribution F(z) so that
F(1/2) = B. The (1 — 2c)100 percent confidence interval is

Clgc = [F-I(@(zm + z)), F~Y(® (27 + zl_,,))] , (6.2)

where 72 = ®~1(F(f)) and z, = & (). Schenker (1985) showed that the BC method

has coverage probabilities that are bias downward substantially in small samples.
To improve the confidence intervals, Efron (1987) introduced the accelerated bias

correction or ABC (sometimes BC,) method to adjust for bias and skewness. With

this method, the confidence interval becomes
Clisc = [F7(8(g(al])), F(2(g(1 —a)))] , (6.3)
where

[
1—a(m+z)

o(z) =+ (6.4)

and «a is the estimate of the acceleration constant, which is a measure of skewness.
Another method for finding confidence intervals is the percentile-t method. The

procedure is to bootstrap a sample and then calculate the usual t-statistic t* = £52

5*

using the formulas from asymptotic theory. We then use the distribution of t* to

construct the confidence interval
Clpe= B~ 5t;_o, B +513) . (6.5)

Hall (1992) shows that the percentile-f method produces confidence intervals that are

closer to nominal values than those produced by first-order asymptotic theory.

6.1.2 Bootstrap Forecasts

Forecasting is an important use (and often the objective) of econometric models.

However, point forecasts are usually of little value by themselves. Standard errors of
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the forecasts or prediction intervals for the point forecasts are also important. Stine
(1985) suggestis the bootstrap as a distribution-free prediction interval estimator.
Again, consider (5.1). We wish to predict yy4;, with known zx4;. To bootstrap the

prediction interval, we first obtain € from OLS estimation of (5.1). Then, we construct

a bootstrap sample [€],...,€y,€v41]- The bootstrap forecast is then
YN = $N+1.§ + &N (6.6)
We then use [€],. .., €x] to construct the bootstrap data set
Y*=XB+¢€ (6.7)

and compute the bootstrap estimate B‘. The prediction error is then
PEy = yjp — anp1B (6.8)

By repeating these steps many times, we can construct an empirical distribution
for the prediction errors. Let F(c) be the CDF of the bootstrap distribution. The

(1 —2a)100 percent prediction interval is
PIg = [znnB + F (o), annB+ F(1 - o)) . (6.9)

Stine (1985) shows that the coverage of the bootstrap prediction intervals are
quite good in small samples. He also proves that the bootstrap prediction interval is
asymptotically correct. Veall (1987) use the bootstrap to obtain forecast errors for
peak electricity demand. Prescott and Stengos (1987) use the method with lagged
dependent variables. Peters and Freedman (1985) use the bootstrap to find multi-

period prediction errors to evaluate between forecasting models.

6.2 The Cost Model

We use a translog functional form for our cost equations. This is the most widely

used of the flexible functional forms (Green, 1993). The translog functional form
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was introduced by Christensen, et al., (1973) as a production function that did not
impose homotheticity or separability. However, we do impose homotheticity in the
cost function. We also imposed symmetry of the cross-price derivatives.

The short-run technology has three variable inputs, two quasi-fixed factor, three
characteristics of the aircraft, two measured output quantities, and two output service
characteristics. We control for cost-neutral seasonal variations by including three
seasonal dummy variables in the cost equation. We also control for fixed firm effects
by including firm dummy variables in the cost equation. These firm effects can be
given the reduced form interpretation of omitted variables that are specific to the firm
and display little variability over the sample period, or can be given a more structural
interpretation as time-invariant technical inefficiencies from a stochastic frontier cost
function (Schmidt and Sickles, 1984; Cornwell, et al., 1990).

After we impose symmetry, the cost function is given by

4 5 4 1 5
].OgC = a+Eﬁ;logp;+226;jlogpglogpj+-2—26;;log2p,-

=1 > i=1 =1
2 1 2
+2_ wlog¥i+ 5 > yilog? Y + mizlog Yilog ¥z
=1 =1
+ Z da4ilogpilog AA + §4s:logpilog AS + 6ry; log p: log FFU
i€{shk,Ihk}
+ésr: logp:log SL + éppilog p;log LF
15
+ Z 6;AIR;, (6.10)
=1

where p; is the z** input price, ¥; is one of the two outputs (scheduled output and
non-scheduled output), AA is the average age of an airframe in months, AS is the
average size in seats of the fleet, F'U is the fuel efficiency index, SL is the stage length,
and LF is the load factor.

The cost shares must add to unity and we must have linear homogeneity in input

prices. The following restrictions are applied to impose these conditions on the cost
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function:

DBi=136;=0; > 6=0 (6.11)

i€{AA,AS,FU,SL,.LF}
The cost share of short-haul capital is given by

5
Sksh = Prsn + E birlog pi + baslog AA

i=1

+6aslog AS + by log FU + ésp log SL + épplog LF. (6.12)
The long-haul capital share equation is

5
Skn = Bur+ ) 6ilogpi +6aalog AA

=1

+64s5log AS + bpu log FU + b5, log SL + 61 log LF. (6.13)
The three remaining share equations are

5
S; = B;+_bi;logp:. (6.14)

=1

Summary statistics based on the translog and its associated share equations are
provided by the Allen-Uzawa, Morishima and own- and cross-price substitution elas-
ticities, and a measure of returns to scale. The Allen-Uzawa elasticities of substitution

are given by

5. 8:; + SiS;
Y S:S;
b = 3t SS(ZS i)} (6.15)
Morishima elasticities are given by
oij = (05: — 05)Si,t # 7. (6.16)
The own- and cross-price elasticities are
€& = 0u4S;
&j = 0:Sii#7 (6.17)

6_.,',' = 0;jS;,i;£j.
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6.3 Model Estimation

We estimated (6.10), (6.12), (6.13) and the labor and energy share equations using
iterated seemingly unrelated regressions (ITSUR). The parameter estimates of the
cost equation are shown in Table 6.3. The returns to scale at the data mean is 1.058.
The fitted cost function is concave at 91.9 percent of the data points and is positive
at all of the data points. The fitted share equation values at the data mean are shown
in Table 6.3.

The Allen-Uzawa partial elasticities of substitution are shown in Table 6.3. From
these estimates, we see that labor and energy are substitutes, as are labor and mate-
rials, labor and long-haul capital, energy and short-haul capital, materials and short-
haul capital, and short-haul capital and long-haul capital. All other combinations are
complements.

As can be seen in (6.15), these elasticities are non-linear functions of the parameter
estimates. Even if the parameter estimates are normal random variables, finding
confidence intervals will be no easy task. One possible way to deal with this non-
linearity is to calculate a linear approximation of the elasticities and then find an
approximation to the true variance using standard statistical procedures. However,
Krinsky and Robb (1986) point out that linear approximations greatly understate
the the variance of the elasticities. They recommend using a simulation procedure,
assuming that the parameter estimates are normally distributed. The covariance
matrix from the estimation is used for this procedure. Since Eaton (1985) proves
that the conventional estimator of the covariance matrix is downwardly biased in
the general SUR model, and Atkinson and Wilson (1992) show that the bootstrap
estimator has a smaller bias, in some cases, we will bootstrap the confidence intervals

for elasticities instead of using the simulation procedure.
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Table 6.1 Cost Function Variable Estimates

Parameter

Variable Estimate T-Ratio
Labor price 0.379 158.486
Labor price squared -0.008 -0.539
Labor x energy -0.008 -1.788
Labor x materials 0.044 3.284
Labor x short-haul -0.035 -5.777
Labor x long-haul 0.008 1.297
Energy price 0.169 117.579
Energy price squared 0.149  53.089
Energy x materials -0.134 -37.319
Energy x short-haul 0.014 4.500
Energy x long-haul -0.021 -71.967
Materials price 0.329 174.935
Materials price squared 0.106 7.260
Materials x short-haul 0.008 1.511
Materials x long-haul -0.024  -4.156
Short-haul price 0.082  38.993
Short-haul price squared -0.010 -1.543
Short-haul x long-haul 0.024 5.716
Long-haul price 0.041  29.326
Long-haul price squared 0.013 3.094
Scheduled demand 0.871  62.366
Scheduled demand squared -0.070 -2.116
Nonscheduled demand 0.081 6.497
Nonscheduled demand squared -0.103 -2.281
Scheduled x nonscheduled demand 0.123 3.139
Stage length -0.263  -11.316
Load factor -0.797 -20.135
Average seats X short-haul 0.019 1.666
Average age X short-haul 0.030 1.588
Fuel x short-haul -0.039 -2.880
Average seats x long-haul 0.001 0.118
Average age x long-haul -0.034 -3.886
Fuel x long-haul 0.033 3.412
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Table 6.2 Fitted Share Equation Values at Data Mean

Labor Share 0.377
Energy Share 0.214
Materials Share 0.288

Short Haul Capital Share 0.086
Long Haul Capital Share 0.035

Table 6.3 Allen-Uzawa Partial Elasticities of Substitution at Data Mean
Labor Energy Materials Short Haul Long Haul

Labor -1.712 X X X X
Energy 0.904 -0.431 X X X
Materials 1.405 -1.167 -1.200 X X
Short Haul | -0.086 1.729 1.323 -11.941 X
Long Haul | 1.582 -1.803 -1.423 9.084 -16.976

To obtain bootstrap values for the Allen-Uzawa partial elasticities, we draw ran-

domly, with replacement, from
€=Y — XBrrsur (6.18)

such that on the b** draw, we select randomly with replacement an integer ¢ from
{1,...,N}, where N is the number of observations in our data set. The z** residual
is used from each of the equations in our system. When N draws have been made,

we construct the bootstrap data set
Y™ = XBirsur+ €,

where € are the bootstrapped residuals. We then estimate this system using ITSUR
to find Birsyp. From these bootstrap estimates, we calculate the Allen-Uzawa partial

elasticities. We continue creating and estimating the pseudo-data many times to build
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a distribution of the Allen-Uzawa partial elasticities. In this case, we drew 6,420
bootstrap samples. We also use the wild bootstrap to find bootstrap estimates by
drawing € in the appropriate manner.

The bootstrapped confidence intervals for the Allen-Uzawa partial elasticities of
substitution are shown in Table 6.4 and 6.5. These confidence intervals confirm most
of our beliefs given the point estimates. However, labor and short-haul capital are no
longer unambiguous substitutes. The confidence interval using the wild bootstrap also
suggests that materials and short-haul capital are not unambiguous substitutes. The
wild bootstrap confidence intervals are wider than those produced by the standard
bootstrap. The differences range from approximately 8% to 69% wider.

The Morishima partial elasticities of substitution are shown in Table 6.3. All but
three combinations of inputs are substitutes. The energy-materials, energy-long haul
and materials-long haul combinations are complements.

The bootstrapped confidence intervals for the Morishima partial elasticities of
substitution are shown in Table 6.3 and 6.3. The materials-long haul capital com-
bination is no longer an unambiguous complement. As opposed to the Allen-Uzawa

partial elasticities, the wild bootstrap does not produce longer confidence intervals in

all cases.
Table 6.4 Standard Bootstrapped Allen-Uzawa Partial
Elasticities of Substitution Confidence Intervals at Data Mean
Labor Energy Materials Short Haul Long Haul
Labor (-1.913, -1.506) < < X <
Energy (0.798,1.009)  (-0.547,-0.308) x x x
Materials (1.171,1.650)  (-1.305,-1.043) (-1.557,-0.862) x x

Short Haul | (-0.461,0.264)  (1.410,2.074)  (0.908,1.744)  (-13.769,-10.347) x
Long Haul | (0.713,2.474) (-2.575,-1.065) (-2.590,-0.267)  (6.218,11.892)  (-23.384,-10.206)
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Table 6.5 Wild Bootstrapped Allen-Uzawa Partial Elasticities
of Substitution Confidence Intervals at Data Mean

Labor Energy Materials Short Haul Long Haul
Labor (-1.973, -1.446) X X X X
Energy (0.790,1.018)  (-0.590, -0.276) x x x
Materials (1.042,1.777)  (-1.384,-0.961)  (-1.908,-0.548) x x

Short Haul | (-0.468,0.302)  (1.353,2.133)  (0.462,2.190) (-13.603,-10.350) x
Long Haul | (0.507,2.698) (-2.968,-0.643) (-3.843,0.846)  (6.175,12.216)  (-28.922,-5.789)

Table 6.6 Morishima Partial Elasticities of Substitution at Data Mean
Labor Energy Materials Short Haul Long Haul

Labor X 0.986 0.395 0.613 1.241
Energy 0.286 X -0.158 0.462 -0.294
Materials 0.750 0.009 X 0.726 -0.064
Short Haul | 1.025 1.182 1.147 X 1.818
Long Haul | 0.641 0.524 0.537 0.900 X

Table 6.7 Standard Bootstrapped Morishima Partial Elasticities
of Substitution Confidence Intervals at Data Mean

Labor Energy Materials Short Haul Long Haul
Labor X (0882,1.092) _ (0.322,0.470)  (0.439,0.777) _ (0.898, 1.608)
Energy (0.242, 0.326) x (-0.196,-0.122)  (0.382,0.545) (-0.469, -0.124)
Materials | (0.593,0.914) (-0.095, 0.116) x (0.553,0.903)  (-0.432, 0.310)
Short Haul | (0.852,1.197) (1.007,1.350)  (0.969, 1.317) x (1.387, 2.223)
Long Haul | (0.402,0.890) (0.288, 0.765)  (0.289,0.790)  (0.590, 1.223) x

Table 6.8 Wild Bootstrapped Morishima Partial Elasticities of
Substitution Confidence Intervals at Data Mean

Labor Energy Materials Short Haul Long Haul
Labor X (0.852, 1.118) _ (0.298,0.491)  (0.451,0.775)  (0.807, 1.687)
Energy (0.243, 0.331) X (-0.218,-0.09) (0.370,0.559) (-0.557,-0.037)
Materials | (0.477,1.033) (-0.196, 0.219) x (0.346,1.117)  (-0.855, 0.703)
Short Haul | (0.876,1.168)  (1.046, 1.316)  (0.945, 1.347) x (1.517, 2.129)
Long Haul | (0.243,1.046) (0.127,0.929)  (0.099,0.971)  (0.487, 1.337) x
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Table 6.9 Price Elasticities at Data Mean
Labor Energy Materials Short Haul Long Haul

Labor | -0.645 0.193 0.404 -.007 0.055
Energy | 0.340 -0.092 -0.336 0.150 -0.062
Materials | 0.530 -0.250 -0.345 0.114 -0.049
Short Haul | -0.032 0.370 0.381 -1.033 0.314
Long Haul | 0.596 -0.386 -0.409 0.785 -0.586

Table 6.10 Standard Bootstrapped Price
Elasticities Confidence Intervals at Data Mean

Labor Energy Materials Short Haul Long Haul
Labor (-0.726, -0.567) _ (0.171, 0.215) __ (0.338, 0.472) __ (-0.039, 0.023) _ (0.025, 0.085)
Energy (0.301, 0.382)  (-0.117,-0.066) (-0.374,-0.301)  (0.120,0.178) (-0.087,-0.038)

Materials  (0.440, 0.626)  (-0.277,-0.224) (-0.445,-0.249)  (0.077,0.151)  (-0.088, -0.010)
Short Haul  (-0.174,0.099)  (0.302,0.442)  (0.262,0.499)  (-1.181,-0.881)  (0.220, 0.408)
Long Haul  (0.268,0.937)  (-0.550,-0.228) (-0.743,-0.077)  (0.524,1.030)  (-0.824, -0.358)

Table 6.11 Wild Bootstrapped Price
Elasticities Confidence Intervals at Data Mean

Labor Energy Materials Short Haul Long Haul
Cabor (-0.749, -0.541) _ (0.170, 0.217) __ (0.303, 0.506) __ (-0.041, 0.026) _ (0.018, 0.092)
Energy (0.297,0.385)  (-0.126,-0.059) (-0.397,-0.278)  (0.118,0.183)  (-0.101, -0.023)
Materials  (0.390,0.674)  (-0.296, -0.206)  (-0.543,-0.160)  (0.040, 0.193)  (-0.130, 0.030)
Short Haul  (-0.177,0.114)  (0.290, 0.457)  (0.135,0.623)  (-1.173,-0.888)  (0.220, 0.409)
Long Haul  (0.192,1.018)  (-0.634,-0.138)  (-1.104,0.243)  (0.536,1.051)  (-0.986, -0.196)
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6.4 Forecasting

Using our cost model along with the appropriate share equation, we can forecast the
future quantities of aircraft (either short- or long-haul) in a particular airline’s fleet.
For example, if the forecast period explanatory variables are known, we can find the

number of short-haul planes for airline j at time ¢ + & as

Cj,H-k - S’,H—k (6 19)
Djt+k ’

AGt+k =
where C:yr is the total cost for airline j at time t+£, S; ¢+« is the short-haul expense
share for airline j at time ¢ + &, p; ¢4k is the short-haul price for airline 5 at time t 4 £,
and ¢jt+& is the number of short-haul planes.

As important as the point forecasts, it is important to get standard errors for
the forecasts. The bootstrap, as is pointed out by Stine (1985), can be used as
a distribution-free method for getting forecast errors. In our model, we bootstrap
forecast errors as follows. We assume that X,;; is known, so our point-estimate

forecast is found by calculating ¢; 4 in (6.19). Our forecast errors are then calculated

by drawing randomly, with replacement, from
€=Y — XBrrsur (6.20)

such that on the b* draw, we select randomly with replacement an integer : from
{1,..., N}, where N is the number of observations in our data set. The i** residual is
used from each of the equations in our system. When N + 1 draws have been made,

we find our bootstrap forecasts:

Cin+1° SiN+1
INtL = : 6.21
i+ PiN4+1 ( )
where Cj n41 and Sjn4, are based on
YN = XN Birsur + €y - (6.22)
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We then construct the bootstrap data set
Y* = XBirsur+¢€, (6.23)

where € are the first IV bootstrapped residuals. We then estimate this system using

ITSUR to find Birsyr- The bootstrap forecast error is

*

E 3
5N+’ SJ’.N+1
PjiN4+1

FEy =N —

and C}py; and S}y, are forecasts based on Sirsyr- We continue creating and
estimating the pseudo-data many times to build a distribution of the forecast errors.
Here, we drew 1, 340 bootstrap samples. Let 2z be the 100 - ath percentile from the
distribution of the bootstrapped forecast errors. The 1 — 2a bootstrap prediction
interval for Yy is (gin+1 + 25, v+ + Z{i—a]-

One can extend this bootstrapping technique to k£ step-ahead prediction intervals
by increasing the number of residuals drawn in each of the bootstraps from NV +1 to
N + k and proceeding as above. If there were a lagged endogenous variable, then one
would need to recursively find each new Y™.

To generate our forecasts, we first project the exogenous variables for four quarters,
using the growth rates in Table 6.4. We then calculate the fitted value for total cost
and capital share. Using these values and the projected cost of capital, we find the
short-haul fleet size forecasts, which are shown in Table 6.4.

These forecasts are not as good as those calculated in Chapter 2. In that chapter,
we allowed the average of the last year total cost and capital share to grow at the
rate projected using elasticities. Here, we use the fitted values.

The standard bootstrap prediction intervals are shown in Table 6.4. These predic-
tion intervals are very large. They range from about 200 planes to over 1,800 planes.

The intervals do include the value for the actual number of planes in the quarter prior
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Table 6.12 Baseline Exogenous Variable Growth Rates

Parameter Annual Growth Rate
Labor Price -1.6%
Energy Price 0.9%
Materials Price —_
Short-haul Capital Price -0.5%
Long-haul Capital Price -0.5%
Scheduled Service 4.5%
Non-scheduled Service 4.5%
Stage Length 0.35%
Load Factor 0.15%
Average Age —
Average Size 0.75%
Fuel Efficiency 2.5%

Table 6.13 Carrier Short-Haul Capital at 1994Q3 and Point Forecasts

Airline 1994Q3 1994Q4 1995Q1 1995Q2 1995Q3
American 42479 644.24 661.33 653.20 657.02
Eastern 14448 257.28 263.96 260.58 261.96
Trans World 302.86 391.66 401.94 396.90 399.11
Continental 258.39  248.76  255.3¢ 252.19  253.65
Delta 325.00 915.60 940.36 929.28  935.20
Northwest 257.48 371.58 38147 376.82 379.06
USAir 398.55 318.81 327.45 323.62 325.70
Southwest 174.38 91.06 93.53 92.43 93.03
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to the projection in all cases. It is not unreasonable for these intervals to be as large

as they are, given the problems with the point forecasts.

6.5 Conclusions

In this chapter, we applied the bootstrap to calculate confidence intervals for Allen-
Uzawa and Morishima partial elasticities of substitution and for price elasticities. We
also used the bootstrap to find prediction intervals for forecasts of airline fleet size.

We began by explaining four methods for calculating bootstrap confidence in-
tervals: the percentile method; bias correction (BC) method; the accelerated bias
correction (ABC) method; and the percentile-t method. An explanation is also pre-
sented on how to construct prediction intervals using the standard bootstrap.

We estimated a translog cost function using the U.S. data set. We calculated
the Allen-Uzawa and Morishima partial elasticities of substitution from the param-
eter estimates. We then bootstrapped confidence intervals for the Allen-Uzawa and
Morishima partial elasticities using both the standard and wild bootstrap. Allen-
Uzawa partial elasticities confidence intervals were longer using the wild bootstrap.
The Morishima partial elasticity confidence intervals were not longer in all cases us-
ing the wild bootstrap. The confidence intervals for price elasticities had the correct
signs.

We also forecast the fleet size for eight U.S. airlines. The forecast were not as
good as those produced in Chapter 2. This is because we used fitted values for the
total costs and capital shares instead of using the elasticity property of our parameter
estimates to “grow” the actual total costs and share values.

In addition to these forecasts, we produced prediction intervals using the standard

bootstrap. These intervals were quite large, and ranged between 200 to 1,800 planes.
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Table 6.14 Carrier Short-Haul Capital Forecasts
with Bootstrapped Confidence Intervals

Airline Type 1994Q4 1995Q1 1995Q2 1995Q3
Lower 152.29 150.56 157.43 151.65

American Point 644.24 661.33 653.20 657.02
Upper 1602.50 1645.83 1635.85 1632.76

Lower 56.82 61.64 53.57 59.00

Eastern Point  257.28 263.96 260.58 261.96
Upper 630.62 657.69 647.10 645.52

Lower 35.69 34.20 3541 36.05

Trans World Point 391.66 401.94 396.90 399.11
Upper 1040.73 1079.66 1025.13 1075.17

Lower 53.10 57.29 54.69 55.86

Continental  Point 248.76 255.3¢ 252.19  253.65
Upper 592.08 604.26 592.96 601.92

Lower 304.63 311.72 305.05 315.64

Delta Point 915.60 940.36 929.28  935.20
Upper 2140.68 2156.97 2061.98 2119.69

Lower 8.01 8.39 5.94 3.46

Northwest Point 371.58 381.47 376.82 379.06
Upper 1054.68 1117.82 1062.58 1111.21

Lower 72.63 74.79 73.55 74.23

USAir Point 318.81 327.45 323.62 325.70
Upper 767.19 797.00 79448 797.30

Lower 20.94 22.15 20.75 21.88

Southwest Point 91.06 93.53 92.43 93.03
Upper 213.93 22041 215.35 216.62
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An improvement to the forecasts needs to be made. This is easily done by using
the methods of Chapter 2. However, this does cause a problem with the bootstrapping
procedure. A method for applying the bootstrap to find prediction intervals when
using the methods of Chapter 2 needs to be found.
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Chapter 7

Applications of the Growth Literature to the
Airline Industry

7.1 Introduction

All outputs that can be produced by a given input vector constitute a production
technology. The frontier technology consists of those combinations that maximize
output given a set of inputs, under the existing production process. Conversely, the
frontier technology can minimize the usage of inputs given an output set. We identify
firms as technically inefficient if they do not operate on this frontier.

The frontier literature has largely been concerned with documenting inefficiency
of firms in various markets. Technical efficiency techniques have a wide-spread ap-
peal because both government policy makers and industry managers are concerned
about productive performance. More importantly, upon determination of efficiency
differentials, these techniques can be used as decisicn making tools since they indicate
areas of deficiency and direction for change.

We are interested in the link between market structure and performance first
made explicit in Leibenstein (1966) article on X-efficiency which states that, given
“proper motivations,” firms can achieve increased efficiency. A prime motivational
factor is the degree of competitive pressure. This hypothesis takes on heightened
importance in today’s global economy. World markets are becoming less regulated and
more integrated leading to intensified international competition. From the European
Union to the former Soviet Bloc to the North American Free Trade Agreement to

the emerging markets in Asia, there is an increase in market contestibility and in
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competition for all the markets in all these economies. Whether rising competition
will lead to efficiency improvements, as managers are increasingly pressed to cut costs,
improve products and maintain or expand market share, is a question worthy of global
concern and attention.

With the introduction of technical efficiency measurement techniques to measure
and partition X-inefficiency (Leibenstein and Maital, 1992), studies on this topic
have become more formalized. Caves and Barton (1990), for example, consider the
relationship between technical efficiency levels and competitive conditions for 285
US industries. Overall, they find support for public policies designed to maintain
competition among producers since these policies promote efficiency. Other studies
focus on sectors such as utilities (e.g., Reifschneider and Stevenson, 1991), since the
dependency between efficiency and competitive pressure has significant regulatory
relevance. Button and Weyman-Jones (1992) find, in their literature survey, that
those industries subject to bureaucratic control generally exhibit lower efficiency levels
than those which are competitive or weakly regulated.

Alam and Sickles (1999) take a unique approach to empirically examine the rela-
tionship between competitive forces and the time pattern of technical efficiency. They
do this by bringing together the technical efficiency literature (Schmidt and Sickles,
1984; Cornwell, et al., 1990; Kumbhakar, 1990; Gong and Sickles, 1992; Tulken and
Vanden Eeckaut, 1995), developments in cointergration (Kwiatkowski, et al., 1992)
and convergence literatrue (Fafe, et al., 1994). As a case study, they examine the
U.S. airline industry between 1970 and 1990. They find evidence that the efficiency
scores of U.S. airlines are, in fact, cointergrated and that these scores are converging.

In Hultberg and Postert (1998), three measures of rank movements were devel-
oped and used to explain leapfrogging in the per capita income of OECD countries.

We can use these measures to report on the level of rank movements of efficiency
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scores between airlines, whether domestic or international. These measures provide
an objective and concise way to discuss the amount of leapfrogging and a possible

test for the ability of economic models to explain the data.

7.2 Evidence of Leapfrogging

We implement our model using parameters and growth rates that equate the in-
dustrial performances of the national flag carriers (or industrial aggregate) to their
respective country’s performance. This provides us with a transparent illustration of
our methodology and its implementation.

Looking at the OECD sample it is apparent that the nations’ airline industrys’
growth paths cross. Figure 7.1 shows the countries’ airline industries income over
the period 1960-90. The U.S. is the income leader for most of the years [Switzerland
obtained the leader position a few times over the sample period]. As can be seen
in Figure 7.1, three countries’ airline industry in particular shifted income positions.
Japan went from being one of the poorest airline industries in 1960 (rank 19) to
become quite wealthy (rank 8) in 1990. Japan appears to be a growth miracle. The
same can be said for Norway which advanced from rank 12 to 4 over the sample
period. In contrast, New Zealand made a rapid descent through the relative income
positions (from 3 to 17), earning the title growth disaster. However, most of the rank
movements take place among the middle countries’ airline industry (those ranked 3
to 16 in 1960) which are close in income levels. For these countries’ airline industries
leapfrogging could be due to random disturbances or heterogereous éhocks.

In fact, a closer examination of the rankings reveals that it is very common for two
countries’ airline industries to switch positions, only to immediately switch back. A
few examples are: Germany and the U.K. from 1961 to 1968, Japan and Italy between

1971 and 1980 (these two countries’ airline industries changed positions six times only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

Figure 7.1 Country Airline Industry’s Relative Income Distribution
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to end up at the same place in 1980), and the U.S. and Switzerland up until 1975.
This shows that much of the rank dynamics are driven by short-term fluctuations.
These rank movements are most likely due to country-specific fluctuations, such as
lagged business cycles, and represent what this paper calls randomness. One way
to remove this from the data is to consider a longer time period than one year for
the analysis. Panel studies often consider 3-5 year time intervals to side-step the
influence of business cycles.

We adopt the methodology of Quah (1993) and Chari et al. (1996) in presenting
the evidence in the form of a mobility matrix. Their papers are concerned with the
world income distribution and, therefore, group countries in transition states based
on their incomes relative to the world average. This approach only indirectly reveals
the amount of leapfrogging since, for example, the mere fact that one country’s airline
industry’s income is 1/4 of world average in 1960 but 1/2 of world average in 1990
does not imply a shift in relative position (especially if the sample simultaneously

display convergence). In contrast, the Markov transition matrix used here directly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

addresses the changes in ranks since countries airline industries are grouped according
to rank instead of incomes relative to world average.

A cell in our mobility or transition matrix represents the average number of transi-
tions for the sample; i.e. the probability of moving a specified number of ranks within
a specific time interval calculated for each consecutive time interval and averaged over
the 30-year period. Each column and row thus represents the ranking of a country’s
airline industry (1 through 22 in a sample of 22 countries’ airline industries), so that
each entry in the Markov transition matrix represents the probability of moving from
the column rank to the row rank during the specified time period. If there is no
leapfrogging at all, then the matrix will be an identity matrix. All off-diagonal en-
tries show a probability of shifts in relative positions, and the more probability mass
off the diagonal the more common is rank movements. We consider average annual,
3-year, and 5-year transition matrices, as well as a 30-year transition matrix.

The main characteristic of the data, whether presented annually or for 3(5)-year
intervals, is persistence, especially at the extremes. There is more mobility among the
“middle airline industries”; these are the airlines which were initially close in income
levels. As the time interval is extended, the mobility matrix shows more and more
off-diagonal probability mass, which indicates that these movements are not driven
by business cycles alone. The probability of jumping more than one state is also

increased, once again indicating sustained movements of countries.

7.2.1 Measures of Rank Mobility

We feel the need for an index to quantify the amount of leapfrogging contained in
the transition matrix. The advantage of an index is that we obtain one number as
opposed to N? numbers, where N is the number of states in the transition matrix. For

example, the 22-by-22 matrix yields 484 numbers to be interpreted. The disadvantage
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is that an entry in the transition matrix is easy to interpret, while the mobility index
might not be. It is also important to note that these measures provide an index of the
amount of leapfrogging in the sample, not of the “nature” of leapfrogging. That is,
two samples may have the same amount of leapfrogging, but behave quite differently
in terms of actual growth patterns. We discuss a possible use of the measures to
approach the question of the nature of rank movements, but in the end one must look
at the end period rankings displayed in the data and the simulation to determine
if the model actually captures the source of rank mobility. Hence, there are two
questions, one, whether the model allows for the amount of leapfrogging observed,
and two, whether the model allows for leapfrogging through the right channels.

We propose the use of two measures of mobility recently introduced by Buchinsky
and Hunt (1996). Both measures are based on the transition matrix. The first is a

measure of expected or average “jump” (AJ) and is given by

— Zis=1 Z?:l li — jlp'.j
AJ~ ’

AJ

where S is the number of states in the Markov transition matrix, and AJ* is the
maximum attainable value for the numerator of AJ, 7 and j represent the column and
row numbers (i.e. ranks), and p;; is the probability of going from rank ¢ to rank j in
one time period. The AJ measure thus calculates the average off-diagonal movements
in the Markov transition matrix.

The second measure is different in that it does not take into account the entire
transition matrix. Since p; is the probability of remaining in the same state [i.e.

1

probability of no shift in relative income positions], 15 is the mean exit time from

that state. Buchinsky and Hunt’s second measure of mobility is defined as

(1 —px)
MP = AP ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

where MP* is the maximum attainable value of the numerator of MP. The MP measure
provides the average likelihood of a country’s airline industry leaving its original
position without considering the number of “size” of the jump. Both AJ and MP will
range from 0 to 1, where 0 represents no mobility at all.

Both of these measures lack a crucial feature which concerns us; namely, that
countries’ airline industries close in income levels are more likely to shift income
positions. The size and uniformity of the earnings data set used by Buchinsky and
Hunt (1996) allows one to ignore this factor. For our sample of airline industries,
however, it ought to be explained. Therefore, we suggest the use of a mobility index
which discounts rank movements between industries close to each other, while it puts a
premium on leapfrogging between countries’ airline industries that are far apart. The
measure used is constructed so that if airlines are closer than the average relative
income distance [YWE;:’;)MIN ] between the airline industries in the sample, then
the probability of leapfrogging is discounted, and vice versa. Thus, for two countries
ranked i and j the “income gap weight”, d;;, becomes

.-V

dij =
i (YMAX_YMINy - )
N-1) |z — 7l

iF]
where Y is the per capita income of the country’s airline industry and N is the

number of countries in the sample. This income weight is then added to the AJ

measure yielding a weighted average jump [WAJ] measure

il i =l p
WAJ* ’

WAJ =

where W AJ™ is the maximum attainable value of the numerator which occurs when
the airline industries are clustered in a bimodal fashion and switch as many positions
as possible.

Again, these mobility indexes are constructed to obtain a summary measure of

the amount of movement in our samples. Theoretically, they can range from 0 to
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1, as the number increases the more transitions are evidenced. There is a question
of what constitutes a large number and what constitutes a small number. Also, we
need to be able to compare two measures and determine when they are statistically
(significantly) different. For both of these reasons, we need to establish confidence
intervals around the various rank measures. This, in turn, requires knowledge of
the distributions of the rank mobility statistics. Although the mobility statistics
are simple to implement and understand, they are based on very complex dynamics
which makes calculating the asymptotic distributions difficult, if not impossible. To
get around the intractability of the asymptotics, we use bootstrapping techniques to
find their distributions. This is one of the main uses of the bootstrap, which was
mentioned in Chapter 5.

Specifically, from an approximate model of the data (in which all countries’ air-
line industries have linear growth paths with a trend break in 1972-73). Next, we
bootstrap these residuals (using the random length block technique from Politis and
Romano (1994)) to generate pseudo data which is subsequently used to recalculate
the various rank measures. The bootstrapping and the consequent simulations are
replicated extensively. The resulting distributions are shown in Figures 7.2, 7.3, and
7.4.

These distributions, and the 95 percent confidence intervals in Table 7.2, show
that even small values for the measures may be statistically significant, especially
for the AJ and WAJ measures, and that the measures need to increase over time in
order for us to judge movements not due to randomness. Note again that, although
we attempt to determine whether rank movements are random or deterministic, the
measures only indicate the amount of rank movements but cannot distinguish between

persistent one-way leapfrogging and deterministic up-and-down rank movements.
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Figure 7.2 Bootstrap Distribution of AJ Rank Mobility Measure
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Figure 7.3 Bootstrap Distribution of WAJ Rank Mobility Measure
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Figure 7.4 Bootstrap Distribution of MP Rank Mobility Measure
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Table 7.1 WAJ, AJ, and MP Mobility Measures for the Data

Yearly 3-Year 5-Year 1960-1990
WAJ 0.0056 0.0118 0.0201 0.1099
(0.0052-0.0060) (0.0096-0.0141) (0.0171-0.0231)
AJ 0.0277 0.0430 0.0682 0.1818
(0.0238-0.0315) (0.0341-0.0546) (0.0549-0.0814)
MP 0.3636 0.4876 0.6061 0.6818

(0.3394-0.3879) (0.3909-0.4818) (0.5455-0.6667)

Note: The numbers in parentheses show the measures for 1960-75 and
197590, respectively.

Table 7.2 95-Percent Confidence Intervals for the Rank Mobility Measures

Yearly 3-Year 5-Year 1960-1990
WAJ 0.0020-0.0258 0.0072-0.0410 0.0096-0.0470 0.0808-0.1318
AJ  0.0144-0.0975 0.0310-0.1345 0.0367-0.1490 0.1784-0.2631
MP 0.1880-0.7306 0.3507-0.8219 0.3846-0.8476 0.6478-0.9467

Note: The Table shows the upper and lower limits for the 95-percent con-
fidence intervals.
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7.2.2 Results from the Data

We report all three mobility measures (obtained from a 22-by-22 transition matrix)
since their relative sizes reveal information about the type of leapfrogging. In general,
a large WAJ or AJ value could be due to a relatively small probability of a big jump,
or a large probability of a small jump. The MP-measure would be small in the former
case and large in the latter, thus, their relative sizes tell us something about the type
of movements. Hence, when comparing simulation results with the data all three
measures should be used when determining the fit of the model.

Table 7.1 presents our three mobility measures calculated from the one-year Mar-
kov transition matrices. For the WAJ measure, the relative income differentials are
also calculated annually. As expected, the indices for annual amounts of leapfrog-
ging are small in absolute values, but, according to our simulated distributions,
significantly different from zero (see Table 7.2). The 30-year annual averages are:
WAJ=0.0056, AJ=0.0277, and MP=0.3636. The measures of leapfrogging appear to
evolve over time. When considering separate measures for the periods 1960-75 and
1975-90, all measures show a larger value in the second half, but this observation may
be due to the OECD sample converging in the post-war period leading to the airline
industries getting proportionally closer to each other. The WAJ measure’s propor-
tional increase is smaller than the AJ measure’s proportional increase, indicating that
this might in fact be the case. This is then consistent with the Easterly et al. (1993)
argument that as countries get closer to each other the random shocks become more
important relative to the transitional effects.

In Table 7.1 the measures of leapfrogging are also shown when every third year
or every fifth year (to remove business cycle effects) is used when calculating the
mobility matrix. For the WAJ measure the income weight at the beginning of the

3(5)-year period is used. All three measures for both 3-year and 5-year data increase
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relative to the annual data. Thus, the number of rank movements appear to increase
as the time period is extended, a fact most clearly observed when we consider the
entire sample period (1960-90). To calculate the WAJ measure for the 30-year period
we use the income differentials which exist in the initial period (1960). The measures
are then much larger in absolute terms, and again, statistically significant. The WAJ
measure becomes 0.1099, the AJ measure is 0.1818 and the MP measure grows to
0.6818.

The statement that the mobility measures increase with the extended time interval
needs statistical support. Using our simulated distributions of the rank measures,
we obtain 95-percent confidence intervals for each measure and time interval. The
results are shown in Table 7.2. For the AJ measure, for example, the 3-year interval
approach yields a 95-percent confidence interval of [0.0130 — 0.1345] while the entire
sample period results in a confidence interval of [0.1781 — 0.2631]. The fact that
these intervals are not overlapping allows us to conclude that the AJ measure does in
fact increase with the time interval. The same result is found for the WAJ measure.
However, although the average MP measure increases with the time interval, we are
not able to conclude with 95 percent confidence that the MP measures for different
time intervals are statistically different .

The MP measure does not distinguish between large and small rank changes (as
it only considers diagonal elements of the Markov transition matrix) while the AJ
and WAJ measures do, it appears as if the changes in relative income positions are
generally small. However, the small jumps are not likely due to randomness, because
the AJ measure increases proportionately more than the MP measure as the time
period is extended. Again, the larger magnitudes for longer time intervals carry some
important implications. If rank movements are only due to randomness, then the

time period should not affect the mobility measures at all. Since this is not the case,
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we conclude that there are additional sources for the observed leapfrogging. In our

simulation we explore if these additional factors are differing accumulation rates.

7.3 The Human Capital Augmented Solow Model

The empirical analysis reaches two main conclusions: the data justifies a study of
leapfrogging, and the observed leapfrogging cannot be explained by randomness alone.
The goal of the simulation is then to explore whether differing accumulation rates of
factor inputs are the additional sources behind the rank movements as predicted
by the standard neoclassical model. Our prediction is that rank movements due to
differing accumulation rates (i.e. different steady states) will surface over time, while
an added productivity shock will accommodate short run rank movements. The
working hypothesis is that the neoclassical model will achieve two goals, one, yield
rank measures similar to the data, and two, yield growth paths consistent with the
observed.

Consider a simple Solow model extended to include human capital as in Mankiw
et al. (1992). For each airline industry, let output Y be produced by physical capital
K, human capital H, and labor L according to the production function

Y, = KFH? (AcLe) ™ *,

where A represents labor-augmenting technological progress. The economy is also
subject to the usual transition equations where labor growth (n), physical capital
investment rate (sg), and the human capital investment rate (sg) are allowed to
differ across countries.

Expressing the model in terms of per unit of effective labor (AL), and finding the

solution for the balanced growth path yields the steady state output per effective unit
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of labor

sa b =]
yt — K°H .
[(n +g+ 6)‘**"]

We derive the predictions for the augmented Solow model for its behavior out of

steady state to obtain the following differential equation
Inge, =1 — e Iny*+e*lny,,

where r=t; —tyand A= (1 —a—B)(n+g+96).
Before the simulation is carried out the model is put into relative terms [similar
to Jones (1995)]. All variables are considered relative to the U.S., the 1960 income

leader:

G, = Yt
= ot
i

Substituting and rearranging yields
Ings, = (1—e ) ny" +elng, + (1 —e™ ) In Ao+ g(t2 — e™*7t1)

where y now represents income. This equation can be expressed as the following

differential equation which we use in the simulations
=1 —e*)lng*+eling, + (1 —e*)In 4 (7.1)

where 7 goes from 1 to 30 (corresponding to the 1960 to 1990 period).

7.4 Simulations

All simulations are based on (7.1) in which all variables are expressed relative to
the United States. Each country’s airline industry’s relative steady state parameters
SK, SH, fi, and n, as well as the actual relative income levels of 1960, are substituted

for y=. Thus we assume that countries are out of their steady states in 1960, but over
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the 30-year-period they grow toward their own steady states. Therefore one would
like to estimate the steady state values for each country. Again, the model allows
the investment rates, the population growth rate, and the relative technology level
to endogenously evolve over time to the steady state levels. However, estimating
the steady state values based on “fundamentals”, such as preferences, taxes, political
instability etc., is extremely difficult. Instead we follow Jones (1995) in using recent
data from each country to proxy for the steady state values [see Table 7.3]. In fact,

we use the same definitions and numbers as Jones, which are:

e For the physical investment rates and the population growth rates, Jones uses

the data for the period 1980-90 from Summers and Heston, PWT 5.6.

e For the human capital investment rate, he uses the SCHOOL variable from
Mankiw et al. (1992).

e For the relative technology level, an estimate of the relative level of Harrod-
neutral multifactor productivity in 1990 is used. This is the “levels” equivalent
of the Solow residual and therefore captures everything not already included in

the production function.

The resulting model is then allowed to grow over a thirty year period at which
point the simulation results are compared to the data. Six different simulations are
performed. The benchmark is based on the assumptions of Mankiw et al. (1992),
while the additional five are carried out in order to test whether different error struc-

tures can aid in explaining the data.

7.4.1 Benchmark

From the human capital augmented Solow model it is clear that we need a few pa-

rameters. Based on Mankiw et al. (1992), we make the following assumptions: a, 8,
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Table 7.3 Estimates of Steady State Variables

—

Country I’Q .:‘i SK g?( SH SAH' n

USA 1 1 0.210 1 0.119 1 0.011
Canada 0.73 | 0.92 | 0.253 | 1.20 | 0.106 | 0.92 | 0.011

Japan 030 | 0.41 | 0.338 | 1.61 | 0.109 | 0.89 | 0.008
Austria 0.52 | 0.80 | 0.247 | 1.18 | 0.080 | 0.67 | 0.008
Belgium 0.56 | 0.93 | 0.207 | 0.99 | 0.093 | 0.78 | 0.005
Denmark 0.68 | 0.44 { 0.215 | 1.02 | 0.117 | 0.90 | 0.006
Finland 0.53 | 0.47 | 0.320 | 1.52 | 0.115 | 0.87 | 0.007

France 0.59 | 1.02 | 0.252 | 1.20 | 0.089 | 0.75 | 0.010
Germany 0.66 | 0.72 | 0.245 | 1.17 | 0.084 | 0.71 | 0.013
Greece 0.21 | 0.40 | 0.198 | 0.95 | 0.079 | 0.68 | 0.005
Ireland 0.33 | 0.65 | 0.238 | 1.13 | 0.114 | 0.96 | 0.007
Italy 0.46 | 1.12 | 0.244 | 1.16 | 0.071 | 0.60 | 0.007

Netherlands | 0.61 { 0.93 | 0.210 } 1.00 | 0.107 | 0.80 } 0.013
Norway 0.57 { 0.53 | 0.276 | 1.31 { 0.100 | 0.84 | 0.009
Portugal 0.19 | 0.79 | 0.207 | 0.99 | 0.058 | 0.49 | 0.003
Spain 032 | 1.04 | 0.239 | 1.14 | 0.080 | 0.67 | 0.009
Sweden 0.77 | 0.67 { 0.212 | 1.01 | 0.079 | 0.66 | 0.007
Switzerland | 0.95 | 0.71 | 0.306 | 1.46 | 0.048 | 0.40 | 0.010
Turkey 0.16 | 0.24 | 0.221 { 1.05 | 0.055 | 0.46 | 0.024
UK 069 { 0.85 | 0.171 | 0.81 | 0.089 | 0.75 | 0.005
Australia 0.79 { 0.63 { 0.269 | 1.28 | 0.098 | 0.82 | 0.019
New Zealand { 0.80 | 0.36 | 0.241 | 1.15 | 0.109 | 1.00 | 0.015
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and g + 6 are assumed to be constant across countries, and n, sg, sy, and A are
assumed to vary across countries

The production parameters, a and B, are assumed to be 1/3, according to recent
convergence literature. The other constant parameters, g, which reflects primarily
the advancement of knowledge which is not country-specific, and 6, the depreciation
rate, are assumed to add up to 0.05, which are the numbers used in Mankiw et al.
(1992). However, Jones (1995) assumes that they sum to 0.075.

7.4.2 Simulation with an Error Term

We add random noise to the human capital augmented Solow model to determine
whether the cross-country data, with respect to rank movements, can be explained
by the standard neoclassical growth model with different accumulation rates and a
random disturbance. The covariance matrix is constructed from the data using five
different assumptions of the error structure: homoscedasticity, heteroscedasticity, het-
eroscedasticity with cross-country correlations, autocorrelation, and autocorrelation
with half the variance.

Each covariance matrix is constructed using the OLS residuals of the model
Y= tﬂ{ + €,

where Y;; is the log of country i’s relative GDP value at time t and f; is the time
trend for country i. That is, we model relative GDP values as a linear time trend.
Further, we fix the relative GDP value of the US at one, and do not include it in the
estimation of the covariance matrices.

From our estimate, we construct a coveriance matrix Q, which is used to add

random noise to (7.1). We construct bootstrap samples

lng?, =1 —-e>)ng" +e > lng, + (L —e*)In Ao + ¢, (7.2)
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where € is a normal random variable drawn from N(0,{) and In§,, is our boot-

strapped relative income. This is a parametric bootstrap. The covariance matrix 2,
estimated from the least squares residuals, is based on one of five models explained
below.

The first covariance matrix is constructed under the assumption that errors are
homoscedastic; that is, the variance of each country’s airline industry is constant and
equal over all time periods. The second covariance matrix is constructed based on the
assumption that the errors are heteroscedastic se that each country’s airline industry
has a different variance, but remain constant over time. For the third covariance
matrix, we keep the assumption of heteroscedastic error, but add cross-country cor-
relation. This cross-country correlation is fixed over time, but varies over each pair
of countries. Fourth, we estimate a covariance matrix where each country’s airline

industry has its own AR(1) disturbance. Our estimate of the p is given by
d

~ i
ri=1——,

2

where d; is the Durbin-Watson statistic for the hypothesis that p = 0. There are
no cross-country effects in this covariance matrix. Finally, we use the AR(1) model

covariance matrix with half the variance.

7.5 Simulation Results

Figure 7.5 shows the growth paths of all the countries’ airline industries for the
benchmark model. From the picture, it is apparent that the benchmark model
displays some leapfrogging, which the mobility measures in Tables 7.4-7.6 confirm.
However, Table 7.4 shows that the annual mobility measures for the benchmark are
much below the data. These results remain for the every third year mobility mea-

sures (Table 7.5). The disparity is declining, however, when we consider the entire
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Figure 7.5 Benchmark Growth Path
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time interval (Table 7.6), the measures are actually greater for the benchmark. This
finding can be explained by the growth paths of the benchmark being determined by
the countries’ airline industries’ differing steady states, an effect which slowly surfaces
as time passes. The benchmark simulation thus shows that leapfrogging is a definite
feature of the standard neoclassical model, especially in the long run. When we add
an error to the benchmark model, the mobility measures all improve relative to the
benchmark. The annual, 3-year and 5-year Markov transition matrices now display
more leapfrogging, while the measures decline over the entire time period. Both ef-
fects bring the measures closer to the data results. Again, the neoclassical model
succeeds in accommodating the amount of leapfrogging shown in the data; over the
short periods, the fit can be explained by random shocks, while over longer periods an
explanation is provided by countries’ airline industries transitions to differing steady
states. The results for the simulated mobility measures are also given in Tables 7.4-
7.6. We believe it possible to approximate the data mobility measures by changing

the error structures appropriately.
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Table 7.4 Measures Using Annual Markov Matrices

Data 1 2 3 4 5 6
WAJ | 0.0056 | 0.0006 | 0.0180 | 0.0150 | 0.0094 | 0.0126 | 0.0079
(0.0058) | (0.0061) | (0.0056) | (0.0047) | (0.0033)

AJ [ 00277 | 0.0089 | 0.0861 | 0.0678 | 0.0525 | 0.0648 | 0.0496
(0.0274) | (0.0227) | (0.0237) | (0.0212) | (0.0178)

MP | 0.3636 | 0.1273 | 0.6045 | 0.5768 | 0.4958 | 0.5384 | 0.4720
(0.1065) | (0.1184) | (0.1432) | (0.1108) | (0.1157)

Note: 1. Benchmark model, 2. with homoscedastic error, 3. with het-
i eroscedastic error, 4. with heteroscedastic error and cross-country correlation,
| 5. with autocorrelated error, 6. with autocorrelated error, half the variance.

Standard errors in parenthesis.

Table 7.5 Measures Using Third Year Markov Matrices

Data

1

2

3 4 5 6
WAJ | 0.0118 | 0.0051 | 0.0186 | 0.0156 | 0.0105 | 0.0221 | 0.0148
(0.0060) | (0.0062) | (0.0058) | (0.0069) | (0.0049)

AJ | 0.0430 | 0.0250 | 0.0872 | 0.0701 | 0.0560 | 0.0944 | 0.0733
(0.0290) | (0.0243) | (0.0251) | (0.0286) | (0.0241)

MP | 0.4876 | 0.3045 | 0.6032 | 0.5808 | 0.5078 | 0.6241 | 0.5653
(0.1088) | (0.1232) | (0.1441) | (0.1033) | (0.1086)

Note: 1. Benchmark model, 2. with homoscedastic error, 3. with het-
eroscedastic error, 4. with heteroscedastic error and cross-country correlation,

5. with autocorrelated error, 6. with autocorrelated error, half the variance.
Standard errors in parenthesis.
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Table 7.6 Measures Using Entire Period Markov Matrices
Data 1 2 3 4 5 6
WAJ | 0.1099 | 0.1115 | 0.0872 0.0874 0.0878 0.0920 0.0879
(0.0093) | (0.0092) | (0.0100) | (0.0135) | (0.0100)
AJ |0.1818 | 0.1875 | 0.2170 0.2159 0.2165 0.2209 0.2180
(0.0224) | (0.0186) | (0.0197) | (0.0277) | (0.231)
MP | 0.6818 | 0.7273 | 0.7943 0.7926 0.8021 0.7987 0.7957
(0.0596) | (0.0670) | (0.0601) | (0.0655) | (0.0610)

123

Note: 1. Benchmark model, 2. with homoscedastic error, 3. with het-
eroscedastic error, 4. with heteroscedastic error and cross-country correlation,
5. with autocorrelated error, 6. with autocorrelated error, half the variance.
Standard errors in parenthesis.

The question remains of whether the measured mobility is of the right “nature”.
In fact, a problem appears when we consider the actual income levels and rankings of
the benchmark simulation. Table 7.7 shows the last year rankings for data and the
benchmark; although some countries’ airline industries’ rankings are close (especially
at either extreme), it is evident that the model fails in exactly replicating the data in
this respect. Adding an error to the benchmark does not, on average, improve the last
year rankings. This is the result of the error being assumed normally distributed with
zero mean. Therefore, the model might not capture the correct kind of leapfrogging.
Most noteworthy is the fact that the benchmark predicts that Japan will not advance
in ranking, while the data shows Japan as a growth miracle. The same is true for
Norway, and conversely so for Belgium, France, and the Netherlands. This is a
failure that we feel is potentially important, and which may also be present in studies
of convergence.

Based on these results, we conclude that the human capital augmented Solow

model shows good results in accommodating the data with respect to the amount of
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rank movements. Also, the Solow model does remarkably well for the most productive
countries’ airline industries (U.S. and Canada) and for the least productive countries’
airline industries (Turkey, Greece, Portugal, Ireland, and Spain). At the same time,
the neoclassical model provides poorer results in terms of giving a complete picture
of the origin of leapfrogging as the model fails in explaining the movements of most
of the other nations’ industries, such as Japan and Norway (see Table 7.7). Having
said that, one feat of the model is that it picks up New Zealand as a growth disaster.
In the end, we feel it is fair to state that the model is not quite sufficient in explaining
the rank movements observed in the data. However, it is true that the simulations
are only as good as our estimated parameters. In particular, we feel the estimated
relative efficiency levels given to us by the model appear somewhat nonsensical for
some of the countries. For instance, the main reason the benchmark fails in explaining
the advancement of Japan is that its steady state efficiency compared to the U.S. is
0.41 (see Table 7.3). At the same time, Italy appears destined to become the most

efficient country in the steady state.

7.6 Conclusions

The OECD sample does display a fair amount of leapfrogging. Based on our results
from the data, annually, there is a low probability for rank movements, whether or
not one accounts for the relative “closeness” of income levels. However, as the time
period under consideration is extended, more leapfrogging is observed. This implies
that relative income shifts are not random (which we verify statistically). The relative
size of the three rank measures indicate quite a few income shifts, which are generally
small “jumps”. The measures of leapfrogging might have increased between the first
half and the second half of our sample period, as predicted by a neoclassical model

with an added random shock. However, this increase is not statistically significant.
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The introduced rank mobility measures are able to establish rank movements, but
perform much better in terms of the amount as opposed to the nature of leapfrogging.
The question remains whether leapfrogging is a significant part of the growth process
of the OECD sample? It has been shown that rank movements do exist, and they
are not purely random. The fact that the amount of shifts is not enormous is not as
relevant; if we believe that countries’ airline industries follow the same growth process
then even the small amount of movements shown here are pertinent.

The simulation of the human capital augmented Solow model, allowing for differ-
ent accumulation rates, provide us with mobility results which are annually poor, but
which improve with the time interval. However, simulated last period rankings are
often quite different from the observed ones. As randomness is added to the model,
we obtain better mobility measures; they are now closer both annually and for longer
time periods. Final period rankings do not improve over the benchmark since random
shocks cancel out over time. Therefore, the neoclassical model is able to supply the
amount of rank movements for the OECD airline industries, but it seems as if the
origin of leapfrogging that it accommodates (random shocks in the short run and
steady state transitions in the long run) does not quite agree with what is observed in
the data. There appears to be more to leapfrogging than random shocks and factor
input accumulations. Also, although this chapter does not deal with the convergence
issue, it has been shown elsewhere that the OECD countries display both convergence
and catch-up. However, the human capital augmented Solow model remains largely

unable to replicate actual growth patterns of the OECD sample in the postwar period.
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Table 7.7 Last Year Rankings for Data and Simulations

Country Data 1 2 3 4 5 6
USA 1 1 | 1.0 (0.03) 1.0 (0.00) 1.0 (0.00) | 1.0 (0.00) 1.0 (0.03)
Canada 2 2 | 20(0.19) | 2.0(0.08) { 2.0(0.00) | 2.1(0.34) | 2.0(0.19)
Japan 8 19 | 19.0 (0.22) | 18.8 (0.53) | 18.9 (0.28) | 17.2(3.12) | 19.0 (0.23)
Austria 15 14 | 12.9 (2.14) | 12.3 (1.68) | 13.7 (1.08) | 13.0 (2.83) | 12.8 (2.23)
Belgium 12 5 | 6.1(2.21) | 5.7(1.93) | 56(1.16) | 6.2(2.88) [ 6.1(2.22)
Denmark 10 15 | 13.5 (2.08) | 14.1 (1.14) | 14.2 (1.08) | 14.1 (1.28) | 13.5 (2.04)
Finland 9 10 | 9.5 (2.60) | 9.5(2.46) | 9.5(1.78) | 9.5(3.02) | 9.5 (2.66)
France 11 3 | 36(1.10) | 3.3(0.75) | 3.1(0.32) | 4.0(1.78) | 3.6 (1.10)
Germany 7 12 | 11.3 (2.54) | 11.6 (1.59) | 11.6 (1.00) | 11.6 (2.14) | 11.3 (2.60)
Greece 21 21 | 21.0 (0.14) | 20.9 (0.34) | 21.0 (0.12) | 20.6 (0.70) | 21.0 (0.14)
Ireland 19 18 | 17.5 (0.64) | 17.6 (0.65) | 17.6 (0.62) | 17.7 (0.85) | 17.5 (0.69)
Italy 16 11 | 111 (2.57) | 11.3 (2.05) | 11.3 (1.58) | 11.2 (2.69) | 11.0 (2.62)
Netherlands 14 4 | 54(1.99) | 5.1(1.80) | 5.0(1.45) | 6.2(3.50) [ 5.5(2.03)
Norway 4 13 | 13.0 (2.29) | 13.3 (1.89) | 13.5 (1.73) | 13.1(2.95) | 12.9 (2.34)
Portugal 20 20 | 20.0 (0.14) | 20.1 (0.34) | 20.2 (0.12) | 20.2 (0.57) | 20.0 (0.14)
Spain 18 17 | 17.4 (0.65) | 17.4 (1.01) | 17.3 (0.86) | 16.4 (3.57) | 17.4 (0.67)
Sweden 5 8 | 85(2.61) | 8.2(1.74) | 8.2(1.25) | 8.3(2.04) | 8.6(2.74)
Switzerland 3 7 | 70(247) | 6.6(191) | 63(1.43) | 6.7(2.28) | 7.0(2.51)
Turkey 22 22 | 22.0 (0.00) | 22.0 (0.00) | 22.0 (0.00) | 22.0 (0.00) | 22.0 (0.00)
UK 13 6 | 69(2.38) | 6.5(1.77) | 6.4(2.17) | 6.7(2.42) { 6.9 (2.39)
Australia 6 9 | 9.0(2.55) | 8.9(1.58) | 8.9(1.35) | 8.9(1.92) | 9.1(2.66)
New Zealand 17 16 | 15.5 (1.16) | 15.9 (0.87) | 16.0 (0.67) | 15.7 (1.73) | 15.5 (1.32)

Note: 1. Benchmark model, 2. Benchmark plus homoscedastic error, 3.
Benchmark plus heteroscedastic error, 4. Benchmark plus heteroscedastic er-
ror and cross-country correlation, 5. Benchmark plus autocorrelated error, 6.
Benchmark plus autocorrelated error, half variance. The values in parentheses
are the standard deviations of the estimates of rankings from the simulations.
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Chapter 8

General Conclusions

This dissertation has addressed several issues in domestic and international airline
economics, as well as some applications of the bootstrap to empirical analysis. In
the first Chapter, we presented a model of U.S. aircraft demand. Qur joint model of
demand and supply for commercial air service and the inferences about the demand
for airplanes that are embedded in that model allowed us to simulate the effects of
emerging technologies in engine design capabilities and in airframe capacities in terms
of modifications in the characteristics of the planes in service. We were able to sim-
ulate the growth in total system demand for service and, thus, for factor inputs such
as planes. We also were able to examine the impacts that emerging technologies that
focus on engine fuel efficiencies and noise abatement characteristics on the demand
for aircraft.

In Chapter 3, Competition in the European Airline Industry, we examined the
productivities, efficiencies, and market conduct of firms in the European airline in-
dustry. We found what appears to be convergence in several of the major sources
of factor productivity to the standard of the unregulated industry in the U.S., inef-
ficiency differentials that are substantially moderated by the competitive pressures
induced by measures put in place through the European Union, and little evidence
that competitive pricing is violated on average. Whether or not selected firms in
the industry are candidates for takeover or what potential exists for selected firms to
join in strategic alliances, mergers, and/or simple code-sharing arrangements is not
explored in this chapter. It would appear, however, that a combination of aggressive

cost-cutting, exploitation of the production capacity of lower-cost U.S. carriers and
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marketing alliances will continue to drive the European industry as the dynamic of
the competitive market continues to rationalize airline firm decision-making.

The third Chapter, A Model of World Aircraft Demand, developed a method
to forecast fleet size in the international airline industry. The model used a de-
mand model for air travel and linked this to a cost model for air travel production.
From derived demand equations for the factors of production, we could predict fleet
size given any number of possible scenarios. Our method allowed for endogeneity
of outputs. The cost model seemed fine, but our demand data was somewhat lack-
ing. Our estimates of demand growth seemed unreasonable. We will need to obtain
world data on demand that is less aggregated. Ticket prices from particular airports,
competitors ticket prices, and unemployment data would substantially improve the
estimates. With airport specific data, we could include city dummies to capture

? There were problems, however. Except for the OECD countries,

“tourism effects.
unemployment data is difficult to find. While it may be difficult to obtain better data
on air travel demand, this will be of the greatest benefit with our model, and we will
be able to better predict world aircraft demand.

The fourth chapter examines bootstrap estimators and heterogeneous and au-
tocorrelation consistent (HAC) covariance estimators. We detailed the method for
doing standard, pair, wild and block bootstraps, as well as the Andrews and Monahan
(1991) HAC covariance estimator. The Monte Carlo evidence suggested that the boot-
strapping techniques work well in small samples and is more suitable than asymptotic
approximations.

In Chapter 6, Bootstrapped Aircraft Cost Model Confidence and Prediction Intervals,
we used the bootstrap to compute confidence intervals for Allen-Uzawa and Morishima

partial elasticities of substitution as well as price elasticities. We also used the boot-

strap to find prediction intervals for forecasts of U.S. airline fleet sizes.
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The sixth Chapter, Applications of the Growth Literature to the Airline Industry,
suggested an application of leapfrogging measures to the airline industry. A detailed
look at Hultberg and Postert (1998) was presented. We found that the OECD sample
does display a fair amount of leapfrogging. The measures of leapfrogging might have
increased between the first half and the second half of our sample period as predicted
by a neoclassical model with an added random shock. However, this increase is not
statistically significant. The introduced rank mobility measures were able to establish
rank movements, but performed much better in terms of the amount as opposed to the
nature of leapfrogging. We also simulated the human capital augmented Solow model,
allowing for different accumulation rates, which provided us with mobility results that
are annually poor, but improve with the time interval. However, simulated last period
rankings are often quite different from the observed ones. As randomness was added to
the model we obtained better mobility measures; they were closer both annually and
for longer time periods. Final period rankings did not improve over the benchmark
since random shocks cancel out over time. Therefore, the neoclassical model was
able to supply the amount of rank movements for the OECD airline industries, but it
seemns as if the origin of leapfrogging it accommodates did not quite agree with what

was observed in the data.
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Appendix A

U.S. Data

The airline production data set includes four inputs: labor; energy; flight capi-
tal; and a residual category called materials that includes supplies, outside services,
and nonflight capital. The data set also includes two outputs: scheduled and a non-
scheduled revenue passenger-miles. Additionally, it includes two network traits: stage
length and load factor. Flight capital is described by four aircraft attributes; the aver-
age size (measured in seats); the average age; and the separate proportions of aircraft
in the fleet that are jet powered or wide-bodied designs.

The most comprehensive data set includes information for the 17 largest U.S.
air carriers that were operating at the time of deregulation, or their descendant air-
lines. The carriers included are American, Eastern, Trans World, United, Braniff
International, Continental, Delta, Northwest, Western, USAir, Frontier, North Cen-
tral, Piedmont, Ozark, Southern, Republic and Texas International. This provides
nearly total coverage of scheduled air traffic by 1990, the data set’s end. This infor-
mation is quarterly, air-carrier-specific information and results in 1,137 total observa-
tions. Attention was restricted to the traditional certificated carriers because routine
data reporting was well-established for them at the time of deregulation. New entrants
can be added to this data set with some difficulty. However, it should be remembered
that these carriers have little experience in providing the often burdensome reporting
required by DOT Form 41 and that noncompliance results in virtually no sanctions.

Consequently, new entrant data tend to be of significantly lower quality. The version
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of the data described in more detail below provides the largest, cleanest data available
on the production of U.S.-scheduled passenger air transport.

The procedure used in constructing the data set has changed considerably over
the last decade. As more and more data sources become available, it will change
further. One of the most significant factors in these changes has been an adaptation
to the changes in the reporting requirements of DOT Form 41. In order to maintain
comparability over time, data form all versions of Form 41 must be mapped into
a single version. The latest significant revision, which occurred in 1987, eliminated
many of the specific functional accounts that were used previously. The most signifi-
cant changes occurred in the areas of labor, supplies and outside services. This latest
version Form 41 data is the most restrictive in that it provides the least detail in
most cases. In other instances, the 1985 revision of Form 41 data is somewhat more
restrictive. However, many of these changes were in place for only a short period
of time. Where the 1985 restrictions were most severe, the 1987-equivalent accounts
were estimated. This occurred most seriously in the area of ground-based capital,
where lease payments and capitalized leases had to be allocated between flight and
ground capital. In other cases, it seemed reasonable to estimate 1985 accounts from
the 1987 data provided. The objective was to maintain as much detail as possible in
all areas of air carrier production.

The construction of the individual input and output categories is described in the
next several sections. In cases where price and quantity pairs for a specific input
or output are constructed, several subcomponents to that input or output are first
constructed. Then, these are aggregated into a single input or output using a mul-

tilateral Tornqvist-Theil index number procedure.! The result of this procedure is a

1This mathematical technique derives indexes from underlying utility, cost, production, revenue,
profit or transformation functions. In this case, the translog cost function is underlying, and the
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price index (much like the consumer price index) that aggregates price information
for commodities having disparate physical units. When total expenditures of the in-
put or output category are divided by this price index, an implicit quantity index is

produced.

Labor

The labor input was composed of 93 separate labor accounts aggregated into five
major employment classes (flight deck crews, flight attendants, mechanics, passen-
ger/cargo/aircraft handlers, and other personal). We do not attempt to correct for
differing utilization rates since we do not have information on the number of hours
worked by the labor inputs. Expenditures in these five subcomponents are constructed
from the expenditure data in DOT Form 41 Schedules P5, P6, P7, and P8.

Following the 1987 modification in Form 41, Schedules P7 and P8 were dra-
matically simplified, eliminating many separate expense accounts. Mechanics and
Handlers appear as line 5 and 6 of the new Schedule P6. In order to be more compat-
ible with the new Schedule P6, trainees and instructors were moved into the Other
Personnel category. Flight attendant expense was calculated by subtracting accounts
5123 and 5124 from Schedule P5 from line 4 (total flight personnel) on the new
Schedule P6.

Other labor-related expenses—such as personnel expenses, insurance and pension,
and payroll taxes—were included as labor expenses. Since labor-related expenses
are provided on functional lines rather than on employment class basis, they were

allocated to each of the five employment groups on the basis of the expenditure share

expenditure shares are used to weight each subcomponent’s contribution to the overall index number.
See Caves, et al. (1982); Diewert (1976); and Good, et al. (1992) for details.
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of that class. After the 1987 Form 41 changes, these three expenditure categories are
provided on Schedule P6 as line 10, 11, and 12, respectively.

The quarterly total head count of full-time equivalent personnel was found by
averaging the monthly full-time personal plus one-half of the part-time employees
over the relevant quarter.

In 1977, Schedule P10 was changed from a quarterly to an annual filing cycle.
This meant that allocations of head counts into specific employment categories could
not be done directly except for the fourth quarter of each calendar year. Instead, the
distribution of head counts among the five labor groups was interpolated using the
annual figures. The estimated head count in each group was found by multiplying
the interpolated percentage by the calculated full-time equivalent head count for that
quarter. In 1983, Schedule P10 was simplified. This simplification collapsed the
handlers category into a smaller number of separate accounts, but did not change the
overall structure of our procedure.

Using the expense and head count information from above, the expense per per-
son quarter and the number of person quarters were calculated. The multilateral

Tornqvist-Theil price and quantity indices for the labor input were then derived.

Energy

The objective of the energy input category is to capture aircraft fuel only. Fuel that is
used for ground operations and electricity are both captured in the materials index.
The energy input was developed by combining information on aircraft fuel gallons
used with fuel expense data per period. Aircraft fuel cost in dollars comes from
Schedule P5, account 5145.1. Gallons of aircraft fuel is listed in Schedule T2, account
7921.
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This input has undergone virtually no change because these accounts remained
substantially unchanged over the 23-year span of our data set. Even though only one
component exists, the multilateral Tornqvist-Theil index number procedure is used

to provide normalization of the data.

Materials

The materials input is comprised of 69 separate expenditure accounts aggregated
into 12 broad classes of materials or other inputs that did not fit into the labor,
energy, or flight capital categories. Carrier-specific price or quantity deflators for
these expenditure groups were unavailable. Instead, industry-wide price deflators
were obtained from a variety of sources. These price deflators were normalized to
1.0 in the third quarter of 1972. The classification of these expenditure accounts are
presented below along with the corresponding source for the price deflator.

In 1987, the modifications of Schedules P6 and P7 led to the elimination of hun-
dreds of separate account categories. In most cases, this did not affect the ability to re-
construct the categories. The sources of information did change, however. Advertising
expense, passenger food, and landing fees appear as line 22, line 6, and line 12 of the
new Schedule P7, respectively. Expenses for aircraft maintenance materials, com-
munications, insurance, outside services and outside maintenance and passenger and
cargo commissions appear as line 17, line 23, line 24, line 25 + line 28, and line 26
+ line 27 of the new Schedule P6. Ground equipment rental expense was line 31 of
Schedule P6 minus account 5147 from Schedule P5. Amounts for other supplies and
utilities appear aggregated together as line 19 of new Schedule P6. These amounts
were apportioned to the supplies and utilities categories using the carrier’s average
proportion in these groups over the 1981 through 1986 periods. Ground equipment

that is owned was unaffected by the 1987 accounting change.
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Flight Capital

The number of aircraft that a carrier operated from each different model of aircraft
in the airline’s fleet was collected from DOT Form 41, Schedule T2 (account Z820).
Data on the technological characteristics for the approximately 60 types of aircraft in
significant use over the period 1970 through 1992 were collected from Jane’s All the
World’s Aircraft (1945 through 1982 editions).

First, for each quarter, the average number of aircraft in service was constructed
by dividing the total number of aircraft days for all aircraft types by the number of
days in the quarter. This provides a gross measure of the size of the fleet (number of
aircraft).

In order to adjust this measure of flight capital, we also construct the average
equipment size. This was measured with the highest density single-class seating
configuration listed in Jane’s for each aircraft type. The fleet wide average was
weighted by the number of aircraft of each type assigned into service. In some cases,
particularly with wide-bodied jets, the actual number of seats was substantially less
than described by this configuration because of the use of first-class and business-class
seating. Our purpose was to describe the physical size of the aircraft rather than how
carriers chose to use or configure them.

We use the average number of months since the FAA's type-certification of aircraft
designs as our measure of fleet vintage. Our assumption is that the technological inno-
vation in an aircraft does not change after the design is type-certified. Consequently,
our measure of technological age does not fully capture the deterioration in capital
and increased maintenance costs caused by use. Our measure does capture retrofitting
older designs with major innovations, if these innovations were significant enough to

require recertification of the type.
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Finally, it is clear that the major innovation that took place during the 1960s and
1970s was the conversion to jet aircraft. While many carriers had largely adopted
this innovation prior to the study period, it was by no means universal. Many of the
local service airlines used turboprop aircraft as a significant portion of their fleets.
We implement this aspect by measuring the proportion of aircraft in the fleet that

are jet powered. The proportion of wide-bodied aircraft was also calculated.

Output

Our data set provides several measures of airline output and its associated character-
istics. The most commonly used measure of carrier output is the revenue ton-mile.
Our data set provides this measure as well as measures of revenue output that are dis-
aggregated into scheduled and nonscheduled output. Nonscheduled output includes
cargo and charter operations. We further provide measures of airline capacity. This
again can be disaggregated into scheduled and nonscheduled operations. Revenue and
traffic data were available from DOT Form 41. These data allowed us to construct
price and quantity figures for seven different outputs produced by the typical airline.
Again, the price per unit (passenger-mile or ton-mile) of the relevant service as con-
structed by dividing the revenue generated in the category by the physical amount of
output in that category. These prices were normalized to 1.0 in the baseline period
(the third quarter of 1972).

In cases where a carrier offered only one type of service (the convention was to
call this “first class”), the service was redefined to be coach class. The reporting of
revenue and traffic charter operations between cargo and passenger service was very
sporadic. These two outputs were combined into a single category with passenger-
miles converted to ton-miles, assuming an average weight of 200 pounds per passenger

(including baggage). Changes in DOT Form 41 in 1985 led to the elimination of the
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distinction between express cargo and air freight. Consequently, these two categories
were also collapsed.

Three different price and quantity index pairs are generated. The first is total
revenue-output and uses the multilateral Tornqvist-Theil index number procedure on
all the revenue-output categories. The second used the Tornqvist-Theil index number
procedure on the two passenger categories. The third results from the use of the index
number procedure on mail, cargo and charter services.

The capacity of flight operations is also provided in our data set. This describes
the total amount of traffic generated, regardless of whether or not it was sold. While
it is possible to distinguish between an unsold coach seat and an unsold first-class
seat (they are of different sizes), such distinctions are not logically possible in the
case of cargo operations (mail and cargo could be carried in the same location).
Consequently, our measure of airline capacity includes only three broad categories:

_ first-class seat-miles flown, coach seat-miles flown, and nonscheduled ton-miles flown.

With the change to T100 as the primary data base for airline traffic in 1990,
carriers are no longer required to report available seat-miles, revenue seat-miles, or
revenues by the level of passenger service. Instead, these amounts are aggregated
with revenues supplied as account 3901 on Schedule P1 after 1990.

Again, the convention that passenger along with baggage is 200 pounds (one-
tenth of a ten) is used to construct the nonscheduled ton-miles. Potential revenues
that could be collected, if all services were sold, are constructed assuming that the
prices for each of these categories remain the same as for output actual sold. In
other words, the price for first-class revenue passenger-miles flown is imputed to first-
class available seat-miles flown. Again, the Tornqvist-Theil index number procedure is
used to generate price and quantity pairs for total capacity output, passenger capacity

output, and nonscheduled capacity output.
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Two important measures of the carrier’s network are also generated. The first is a
passenger load factor. This is found by dividing revenue passenger-miles by available
seat-miles. This measure is generally related to flight frequency with a lower number
indication more frequent flights and consequently a higher level of service. Other
definitions of load factor are possible, such as dividing the total passenger revenue
collected by the total that would be collected were the planes flown full (derived from
the passenger capacity output times passenger capacity price). If desired, these can
easily be constructed using information in the data set. Stage length also provides
an important measure of carrier output. Generally, the shorter the flight, the higher
the proportion of ground services required per passenger-mile and the more circuitous
the flight (a higher proportion of aircraft miles flown is needed to accommodate the
needs of air traffic control). This generally results in a higher cost per mile for short
flights than for longer flights. Average stage length is found by dividing total revenue

aircraft miles flown by total revenue aircraft departures.
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Appendix B

Furopean Data

Supply

Our supply data set consists of a panel of the eight air carriers from Europe that
were used in Captain and Sickles (1997). A number of data series used therein
were extrapolated between 1985-1990. Results presented here are based on a newly
constructed and complete data set of 37 international airlines from 1976 to 1994. The
construction of this data set is explained in Appendix C. These carriers and countries
are followed with annual observations from 1976 through 1994.

In addition to the stage length and load factor constructed in the world data set,
we construct a measure of network size. The number of route kilometers provides a

measure of the total network size.

Demand

The demand data was collected for the European countries in the study. The de-
manud data for Denmark, Sweden and Norway are used to create as single data series
for Scandinavia by weighting by their respective GDPs. The GDP series was obtained
from the Main Economic Indicators, a publication of the Economics and Statistics
Department of the Organization for Economic Cooperation and Development
(OECD). The GDP figures are reported in billions of dollars. The series on private
consumption expenditure growth is taken from the publication Historical Statistics,

which is published by the OECD. These data are an implicit price index with year-
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Table B.1 List of Countries and Financial Instruments Used to Find Short-Term

Interest Rates
Country

Instrument

Belgium
Denmark
France
Germany
Italy

Three Month Treasury Certificates
Three Month Interbank Rate
Three Month Pibor

Three Month Fibor

Interbank Sight Deposits

Netherlands
Norway
Spain
Sweden

Three Month Aibor

Three Month Nibor

Three Month Interbank Rate

Three Month Treasury Discount Notes

United Kingdom Three Month Interbank Loans

to-year percentage changes. The annual short-term interest rates are also taken from

Historical Statistics. Table B.1 lists the financial instruments that are the basis for

the series for the respective countries. The rail data is from Jane’s World Railways.

The rail price was calculated as the ratio of passenger and baggage revenue to pas-

senger tone-kilometers. This is consistent with the price of air travel. The OECD

International Energy Agency’s publication Energy Prices and Tazes is the source for
gy A8

the gasoline price data. The gasoline prices include all taxes.
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Appendix C

World Data

Our airline data set consists of a panel of the largest air carriers from Asia, Europe
and North America. These carriers supply approximately 85 percent of the scheduled
passenger traffic in the world. The carriers and countries are presented in Table 4.1.
These carriers are followed with annual observations from 1976 through 1994.

The primary sources for our data includes the Digest of Statistics for Commercial
Air Carriers from the International Civil Aviation Organization and the Penn World
Table [Mark 56] (Summers and Heston, 1994). There are frequent instances where
these sources were not complete. Consequently, data was supplemented with other
sources such as the International Air Transport Association’s World Air Transport
Statistics and Federal Express Aviation Service’s Commercial Jet Fleets. Using these
sources, we construct a set of four airline inputs: Labor, Energy, Materials, and

Aircraft Fleet. In addition we construct several aggregate airline outputs along with

characteristics of these outputs.

Materials

Our materials index is based on the financial data from ICAO. It uses total operating
expenses minus the amounts spent on aircraft rental, depreciation, fuel and labor
(from ICAQ Fleet and Personnel). Because our data is in different currencies, with
different bundles of goods and services that those currencies will purchase, we need

to put amounts in common terms. Simply using exchange rates does not adequately
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make expenditures comparable across countries since exchange rates are heavily in-
fluenced by the narrower sets of goods that are imported and exported. Instead, we
use purchasing power parities. Unlike our U.S. data set based on Form 41, we do
not have much detail about detailed subcomponents. While expenses are broken up
along functional lines (ticketing, passenger services, etc.), we generally do not have
adequate information to remove other physical inputs (primarily labor) from these
categories and do not have separate price indices for them, even in those cases where

we are able. This leaves our materials index with a single subcomponent.

Labor

Inconsistencies in the definition of labor categories, differences in aggregation and
missing data (primarily expenditure data) demand that our labor index is also con-
structed from a single subcomponent. Our labor index uses the number of employees
at mid-year as the measure of quantity. Prices are calculated by dividing expenditures

by this quantity.

Energy

Unlike the U.S. Form 41 data, we do not have independent, carrier specific measures
of either quantities and prices or quantities and expenditures for aircraft fuel. This
is particularly problematic since fuel prices vary widely around the world, primarily
the result of tax differences. ICAQ does compile annual information about jet fuel
prices within each of its 12 regions. We use this information as a price measure in
cents/liter. Quantities are calculated by dividing the fuel expenses by this price. For

consistency, we use ICAQ’s prices even when we have carrier specific information
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available from other sources (such as U.S. DOT Form 41). The U.S. and ICAO prices

compare fairly closely.

Flight Capital

Because of the importance of flying capital in our model, we describe this input in
considerably more detail: providing several characteristics of the fleet in addition to
its quantity and user price. We use an inventory of aircraft fleets provided by ICAO to
determine the number of aircraft in over 80 separate aircraft types. For each aircraft
type, we construct a user price, roughly comparable to an annual rental price. Total
expenses are then the sum of these user prices, weighted by the number of aircraft in
a carrier’s fleet in each category. We considered several alternatives in constructing
these user prices. We rejected the traditional approach of basing cost on book value
since this is not respomsive to changing demands for different types of aircraft at
different points in time. For example, following deregulation in the US, the demand
for small aircraft increased dramatically (along with their selling price) while wide
bodied aircraft had a dramatic decrease in price. Qur valuation of individual aircraft
types is based on the average of Avmark’s January and July subjective valuations of
each type of aircraft for every year. These valuations are based on recent sales and
perceptions of changing market conditions for aircraft in half-time condition. The
primary liability of this approach is that it does not capture benefits (for example
reduced maintenance) for newer rather than older aircraft within a particular type.
This approach also poses some problems for aircraft that are not widely traded or
for aircraft that are not jets. For aircraft that are not widely traded, we used the
most comparable aircraft that was traded in order to get a market value. For the
BAC/SUD Concorde, we used the Boeing 747-200. While the 747 is a much larger

aircraft, because of its speed, the revenue generating capability of these two aircraft
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is roughly comparable. Soviet equipment also posed some problems. Most airlines
do not consider this equipment very desirable and its market value is considered
to be fairly low. We value it as comparable to the oldest Western equipment of a
comparable size. For example, we value the Tupelov Tu—-154 at the same rate as the
Boeing B727-100 and the Tu-134 as the same as a BAC-111. We value the Ilyushin
[1-62 the same as a Douglas DC-8-10. Avmark also provides some limited information
about turboprop aircraft. We divided turboprop aircraft into six categories (YS-11,
Lockheed Electra, Lockheed Hercules, Fairchild F-227, Fokker 27, and Saab 340) and
allocated different types to these categories based on age and size (for example, we
allocated the Fokker 50 into the Saab 340 category since they are both relatively
new design commuter aircraft. We allocated the HS-748 to the YS-11 category since
they are both 1960s design 50 passenger aircraft). We had a final residual type of
aircraft that could not conveniently be categorized this way. Some carriers, Swissair,
for example, operate a small fleet of single engine aircraft. Others operate one or
two helicopters. We valued single engine piston aircraft at 100,000 and helicopters
at 400,000. These residual aircraft are so small (in terms of the number of seats of
capacity) that our cost per seat user price is insensitive to whatever decisions we make
about their valuation.

Because we value aircraft in half time condition, we assume their remaining useful
life is 14 years and use a 1.5 declining balance method to calculate economic depre-
ciation. We considered several alternatives in constructing the interest portion of
the rental price: using local and US real interest rates and using fixed depreciation
rates versus rates based on changes in the valuation of the asset. We rejected an
approach that used country specific interest rates. It was not possible to find compa-
rable interest and inflation rates across different countries. In some cases, Pakistan

specifically, real interest rates were always negative and nominal rates did not change
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over the entire sample period. Under the assumption that marginal decisions about
fleet size were based on the international leasing market, and the leasing market was
dominated by U.S. carriers and U.S. prices, we used rates based on Moody’s Baa rate
for 6 month commercial paper. An alternative to using our depreciation method de-
scribed above, is to construct the depreciation portion by viewing an aircraft as both
a financial and economic asset. Under this approach, the cost of holding and using
the aircraft would be the difference in market value at the end of the year compared
to the beginning of the year plus the nominal interest rate. We ultimately rejected
this approach because it lead to several instances where the capital price fluctuated
dramatically near periods when the price for a particular aircraft was depressed due
to random events (such as the DC~10 grounding in 1979, or the bankruptcy of a
carrier leading to lots of a particular aircraft flooding the market). In addition to
constructing price and quantity measures, we also generate several characteristics of
the capital stock: its size (maximum seats per plane), its technological age (in years)
and a classification of the aircraft as turboprop, jet or wide bodied jet.

Data on these technological characteristics were collected for individual aircraft
types from Jane’s s All the World’s Aircraft (1945-1996 editions). We used the av-
erage number of months since first flight of aircraft designs as our measure of the
technological age of the fleet. Our assumption is that the technological innovation in
an aircraft does not change significantly after the design is first flown. While it would
have been desirable to use certification date of equipment (as in our U.S. data set),
not all equipment types are FAA certified. Our measure of technological age does not
fully capture the deterioration in capital and increased maintenance costs caused by
use. Our measure does capture retrofitting older designs with major innovations, if
these innovations were significant enough to lead to a new aircraft designation (e.g., 2

Convair 580 is a retrofitted Convair 240 with new turboprop engines and wing mod-
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ifications. A DC—8-T2 is a retrofit of a previous version with new engines). Average
equipment size was measured with the highest density seating configuration listed in
Jane’s for each aircraft type. This assumption was necessary for consistency. Over
time, the number of seats in a particular aircraft type has increased by decreasing seat
pitch. Even within a particular carrier’s fleet, the number of seats varied, sometimes
significantly, yet we were not able to identify the total number of seats. Further,
for aircraft used in combination service, the actual number of seats would seriously
understate the aircraft’s true capacity and revenue generating capability. Since our
purpose was to consistently describe the bulk transport capability of the fleet, we
used this single maximum value regardless of the actual seating configuration. This
average across the fleet was weighted by the average number of aircraft of each type
assigned into service. In some cases, particularly with wide-bodied jets, the actual
number of seats was substantially less than described by this configuration.

We also constructed the percentage of aircraft in several categories: turboprop,
jet, and a subgroup of jets: wide bodied jet (determined by having two aisles in the
main cabin). To the extent that turboprop and jet aircraft percentages do not sum to
one, it indicates the presence of either piston or rotary wing aircraft. These categories
roughly provide measures of the potential productivity of capital as well as its hetero-
geneity. As more wide bodied aircraft are used, resources for flight crews, passenger
and aircraft handlers, landing slots, etc. do not increase proportionately. The percent
of turboprops also provide a measure of aircraft speed. This type of aircraft flies at ap-
proximately one third of the speed of jet equipment. Consequently, providing service
of these types of equipment requires proportionately more flight crew resources than
with jets. Qur data provide for two separate categories of airline output: scheduled
passenger output, non-scheduled, cargo and incidental output. This second category

includes revenues that are attributable to airline related activities, but that are not
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the physical transport of passengers and cargo. An example would be maintenance
performed for other airlines. For some carriers, this can be a significant component

of revenue (and user of resources). For others, this category is virtually zero.

Output

Our scheduled passenger output is measured in revenue tonne kilometers. This is
calculated under the assumption that a passenger, along with checked baggage con-
stitutes 200 pounds in weight. Our nonscheduled output measure combines charter,
mail and cargo operations. Charter passenger traffic again assumes 200 pounds per
passenger. For our scheduled and nonscheduled outputs, both quantity and expense
information is available. For incidental output, we use the country’s purchasing power
parity as a deflator to construct a quantity measure.

Finally, we constructed two traditional measures of the carrier’s output: stage
length and load factor. Load factor provides a measure of service quality and is often
used as a proxy for service competition. Stage length provides a measure of the length

of individual route segments in the carrier’s network.
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